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Preface 
 

Why would a professional economist want to learn about Einstein’s theory of Special 
Relativity?  The answer is quite simple: curiosity.  My focus on my career left me well 
educated in my chosen field but poorly educated in other areas.  Perhaps my most 
significant lacuna was in the sciences. 
 
So after I retired I decided to develop a better understanding of the world around me.  I 
had long realized that for me the best way to learn was to teach, and the best way to teach 
was to write down my message in detailed lecture notes.  In that way I would be forced to 
see more clearly the flaws in my understanding and, hopefully, I would communicate a 
clearer message.  So I learned to learn by writing.  
 
My education gave me the mathematical skills to apply this curiosity in the most fruitful 
manner: by going through the details of the theory and deriving the theory as a physicist 
might. Simply reading and remembering a list of conclusions was not a path to 
understanding: remembering a conclusion is, for me, more difficult than remembering the 
path to that conclusion. 
 
So what follows is best seen as notes for an undergraduate lecture on Special Relativity, 
to be given in a hypothetical course to imaginary students. It opens with a brief 
description of space and time in classical mechanics, the field created by Isaac Newton in 
the 17th century.  Then it summarizes the basic conclusions of relativistic mechanics, 
created by Albert Einstein in the early 20th century.  The remaining sections provide the 
foundations for those conclusions. One who wants to jump to the conclusions need read 
no further than the second section. 
 
One might ask, “Who cares?” The answer is that we who are rooted on Earth never 
directly notice the effects of relativity because we are all at rest with respect to each 
other, and because even if we are moving relative to one another, the motion is at such 
low speeds that we never see relativistic effects. But we are all constantly facing the 
effects of relativity in unseen ways.  For example, pilots, mariners, and, lately, even 
drivers and walkers use Global Positioning Systems to navigate.  Because the dozen or so 
GPS satellites are orbiting Earth at 14,000 km/h, the transmission of information between 
them and the dozen or so satellites must be corrected for relativity effects on time and 
distance; the effect is small but it is cumulative. Another example: physicists engaged in 
particle research involving high energies must translate the times and distances observed 
for particles between their—the physicists’—time and distance and the particles’ time 
and distance. None of us have to know how this is done, but we are all affected by those 
who do know. 
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1. Important Distinctions in Relativity 
 
While learning about Special Relativity (SR) I encountered many sources of confusion.  
These were not so much in the mathematics, but in the uses of language and in the 
interpretation and application of the theoretical concepts.  Here I will list some of the 
more important areas of confusion.   
 
Measuring “Time,” “Distance,” and “Mass” 
 
The essence of Special Relativity is the distinction between time, distance, force, mass, 
energy and other physical attributes as seen by two or more observers when they are in 
uniform motion (constant velocity) relative to each other.  For each observer there is a 
different measure of these attributes, so, for example, “time” might refer to: the stationary 
observer’s measure of his own time using his own clock; a stationary observer’s measure 
of a moving observer’s time on the moving observer’s clock; the moving observer’s 
measure of his own time on his clock; or the moving observer’s measure of the stationary 
observer’s time on the stationary observer’s clock.  
 
To make this a bit less confusing, we use the term “proper” when referring to the moving 
observer’s measurement of his own attributes.  If M is an moving at constant velocity 
relative to S, a stationary observer, proper time is M’s time as measured by his own 
clock, proper distance is the distance from M as measured by M’s own ruler, proper 
mass is mass measured by M on M’s own mass meter, and so on.  The notation for these 
“proper” attributes is to attach an apostrophe to the symbol used: t’ is the proper time,; x’ 
is the proper distance, and so on.  
 
The time on M’s clock as measured by S will differ from proper time because of the 
effects of relative motion on S’s perception of M’s; this is true of most of S’s perception 
of M’s physical attributes.  It is common to refer to S’s perception of M’s time as 
coordinate time, and similarly for all the other attributes.  I call this simply “time”, or 
“distance,” or “mass,” etc.  These are denoted as t, x, and so on. 
 
This language makes sense. When we on Earth talk about time, distance, and mass we are 
usually referring to the time, distance and mass on Earth—with which we are at rest: the 
time to drive from Boston to San Francisco, the distance from Boston to San Francisco, 
the mass of the automobile we are driving.  To us, that is “time,” “distance,” and “mass.” 
So we use “proper” to denote actual measurements on the moving object.  
 
What about M’s measurement of S’s proper time, distance, and mass?  Well, M is at rest 
relative to himself, and the measurements he makes on his instruments are his “time,” 
“distance,” and “mass” for his attributes.  From M’s perspective, S is moving and M’s 
measurements of S’s attributes are now the “proper” attributes. The theory holds that M’s 
view and S’s view are symmetric: if we take S’s point of view, M (we will see) is seen as 
moving in slow motion; if we take M’s view, S is seen as moving in slow motion.  There 
is no such thing as “absolute” time, mass, etc. 
 



 
 

 2 

 
 
 
Invariant Attributes 
 
A second distinction is between attributes that are invariant and those that are not.  
Invariant attributes are measured as the same for all observers regardless of their relative 
motion.  They are important because…well, because they are invariant: everyone sees 
them the same way.  Invariant magnitudes are observer-independent. Under relative 
motion attributes that are not invariant are measured differently by every observer; they 
are observer-dependent.  
 
The primary invariant magnitudes in Special Relativity are proper time, proper distance, 
proper mass (usually called rest mass or invariant mass), proper energy (also called rest 
energy or invariant energy), velocity, speed of light, and the invariant interval. 
 
For example, we will see that distance is not invariant: S will measure M’s distance from 
S as different from M’s measurement of his distance to S.  So using the term “distance” 
ignores the question “as measured by whom?”  But we will see that there is an invariant 
measure of distance, called the invariant interval.  The invariant interval is not a distance 
in space, because distance in space is not measured the same by all observers.  Nor is it a 
distance in time, because that also is measured differently by different observers.  The 
invariant interval is a shared measure of distance in spacetime.  If S measures the 
invariant interval between two spacetime positions (“events”) as “ 23 light years,” M will 
also measure that invariant interval 23 light-years.  
 
Perception and Reality 
 
In descriptions of Special Relativity one often comes across statements like “A stationary 
observer sees the clock of a moving observer as ticking slower.”  The language of 
“thought experiments,” which we will discuss, is rife with these statements. Enough of 
this language makes you thinking that it is all just an illusion—that one clock is not really 
moving slower. In a sense, it is an illusion—if both clocks could be put side-by-side, they 
would tick at the same rate.  But that is because they would be at rest with each other, not 
because a moving clock doesn’t really tick slower than a stationary clock. 
 
So reader beware: Special Relativity is not a mere illusion: relative motion does really 
affect physical attributes!  
 
 Units of Measurement 
 
There are several measurement systems used to measure mass, distance, energy, force 
time, and so on.  For example, the Standard International System (SI) uses the kilogram 
for mass, the meter for distance, and the second for time.  The CGS System uses the gram 
for mass, the centimeter for distance and the second for time.  The Poundal System (PFS) 
uses the pound for mass, the foot for distance, and the second for time; the PFS was 
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common in England before Napoleon introduced the metric system.  The modern 
convention, which we follow, is to use the SI system. 
 
The derivation of measures of time, distance, and mass clearly depends on the units of 
measurement.  So while the equations used in physics might look the same, they will give 
very wrong answers unless consistent units of measurement are used. 
 
 
 
 
An appendix lists the important units of measurement and the conversions between them. 
 
 
  

Box 1 
Important Definitions 

 
In what follows we use the definitions: 
 
       c: the speed of light is, say, meters per second 
      ct: the time in S’s frame, measured as, say, light seconds, as seen by S (time) 
        x: the distance of an object or event from S’s position, as seen by S (distance) 
       m: the mass of an object at rest with M, as seen by S (mass) 
      ct’: the time in M’s frame, as seen by M, in light-seconds (proper time) 
       x’: the distance of an object or event from M, as seen by M (proper distance) 
      m’; The mass of an object at rest with M, as seen by M (proper mass, or rest mass) 
        β: the “rapidity” of a moving object relative to the speed of light; β = v/c 
        γ:  the “Lorentz factor” (also “dilation factor”); γ = 1/√(1 - β2) 
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2. The Classical View of Space and Time 
 
The classical view of space and time rests on Newton’s Laws of Motion.  Suppose that S 
is stationary and M is moving relative to S at a constant velocity v, which is less than the 
speed of light, c. Both S and M are said to have an inertial frame of reference for time 
and space, but one frame is moving relative to the other.  
 
Suppose also that there is an object—a star—at a constant position in S’s inertial frame. 
For simplicity, reduce “space” to one dimension—distance from the initial position: right 
(“away from S”) or left (“toward S”), with S’s initial position at the origin; up/down and 
in/out are ignored. Then we can describe the star in S’s frame as being at the coordinates 
(x0, t) in Figure 1: it is always at x0 even as time changes, as in Figure 1. 
 
The vertical axis (0, t) is S’s timeline (often called his worldline) because it shows S’s 
path through time only (he is always at distance x = 0 from himself). The star’s timeline 
is the vertical line at (x0, t) because at all times the star stays at distance x0 from S. 

 
S’s inertial frame is described by the Cartesian coordinate system, as shown below (for 
the moment, ignore the ray vt’). 

 
Figure 1 

Classical Distance and Time 
 
                                                t           vt’            ê 
                                                                             ê 
                                                                             ê 
                                                t0                                         ê 
                                                                            vt0       x’0 = x0 - vt0 ê 
                                                                             ê 
                                                                             ê 
                                                                             ê                                                          
                                                                             ê 
    -x                                          0       vt0               x0              +x 
                                                 

 
           

 
 

 
Now suppose that an object—a spaceship with M aboard—takes off from the origin and 
heads toward the star (rightward) at velocity v. Let t’ represent the spaceship’s proper 
time, and x’ represent the spaceship’s proper distance from S, both as measured by M. 
The timeline for the spaceship is the ray vt’ running out of the origin—it shows all the 
positions of the spaceship in S’s frame as time increases.  
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How far is the spaceship from the star at S-time t0?  The Newtonian answer is (x0 – vt0), 
the distance from S to the star less the distance traveled by M toward the star. And 
M measures the same time and distance; he has proper distance x’ = (x0 – vt0) to go, and 
he has traveled for t’ = t.  Time and distance are invariant in the Newtonian system: for 
both S and M time and proper time are the same, as are distance and proper distance. 
 
 

 
This is the way we normally think about time and distance.  We all see it the same way: a 
New York City resident measures the distance to Paris as the same number of kilometers 
that a Paris resident measures to New York. And at 11:00am GMT in New York it is also 
11:00am GMT in Paris. Time and distance are invariant attributes. 
 
But Einstein found that the classical translation does not apply when the relative velocity 
of the moving observer motion is “high.”  To address this, Einstein united space and time 
into spacetime, and found that the normal physical attributes are not invariant. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

Box 2 
The Classical Transformation of Motion 

   
                                                     x’ = x – vt 
                                                          t’  = t 
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3. Einstein’s View of Spacetime 
 

Special Relativity requires only two postulates: 
 

1. The speed of light is the same for all observers: each observer sees the speed of 
light as c regardless of the relative motion of the light source or of the observer. If 
a flashbulb goes off on earth at the same time as a spaceship passes earth going 
100,000 km/sec, both an earthbound observer and a spaceship observer will 
measure the speed of that light as 300,000 km/sec. In contrast, the classical 
answer would be that light travels at 300,000 km/sec relative to the Earthbound 
observer, but at only 200,000 km/sec relative to the spaceship observer.   

 
2. All laws of physics are the same in both a stationary observer’s frame and a 

moving observer’s frame. For example, Newton’s Second Law of 
Thermodynamics, law F = ma (Force = mass times acceleration), applies in both 
frames. Force and Mass might be measured differently, as we will see, but the 
same Law applies. 

 
From these two postulates Einstein concluded that Newtonian dynamics applies only 
when the spaceship is traveling at a low speed relative to the speed of light. At very high 
velocities, S’s perception of M’s spacetime coordinates is “warped.” Time and space are 
not “really” different for S and M: each has a Cartesian view of their own space and each 
measures time in seconds on their clock. It is S’s perception of M’s time-space position 
that is altered by M’s relative motion. This effect is symmetric: In M’s frame his 
spaceship is in a Cartesian space-time, but M’s perception of S’s frame is warped! 
 
Before getting into the mathematics of Special Relativity, we first highlight some of the 
important implications.  The reader who wants only the conclusions can stop at the end of 
section 3.  
 
3.1 The Relativity of Time and Distance 
 
In Special Relativity we are comparing the spacetime of a stationary observer, S, with the 
spacetime of a moving observer, M.  Unlike the classical framework, Special Relativity 
sees time and space as inextricably related: each observer will measure time and distance 
differently. 
 
Let (x, ct) be the spacetime coordinates of S, the stationary observer, and (x’, ct’) be the 
spacetime coordinates of M, the moving observer, as seen by M. According to Special 
Relativity: 
 
                                            t /’t =  1/√(1 - β2)  
                               and   
                                            x/x’= 1/√(1 - β2) 
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where β = v/c is the rapidity of the moving object and γ is the Lorentz factor (see Box 1).  
As v goes from zero to c, proper times and distances don’t change but time and distance 
(t and x), as measured by the stationary observer goes to infinity.  Thus, S’s measurement 
of M’s time and distance dilates, or increases, relative to M’s on-board measurements. 
 
For example, suppose at t = t’ = 0, M leaves Earth on a spaceship heading to a distant 
star, as in Figure 1. Suppose further that M’s clock says that M has been underway for 2 
light years (t’ = 2) and that there are 10 light years to go before the star is reached  
(x’ = 10).  If the spaceship’s velocity is ½ of light speed (β = ½ ) then t/t’ = x/x’ =  1.15.  
S thinks M has been underway for 2.3  light-years and has 11.5 light-years to go to the 
spaceship’s destination. 
 

Table 1 
Dilation and Rapidity 

 
                                            β                   t/t’              t’t 
 
 
 
 
 
 
 
 
The clock on a spaceship moving at 99% of the speed of light will be seen by S to have 
time moving at only 14% of the rate of S’s clock! And at 99.99% of light’s speed  
t’/t = .01! As v approaches c (β approaches 1), t explodes and t’ vanishes.   
 
Note that the dilation of distance is only in the spaceship’s direction of travel!  If we 
convert to 4-space (3 space dimensions and one time dimension) we find dilation only in 
the t and x directions; directions perpendicular to the direction of travel (y and z) show no 
dilation and both S and M would agree on transverse motion. 
 
A Thought Experiment 
 
Einstein often approached complex problems with thought experiments: imagining 
physical analogues to get simple insights into the answers that would require more 
complex analysis to nail down.  One example is Einstein’s Light Clock, used to 
demonstrate time dilation. 
 
A light clock is a hypothetical device to measure time precisely. It is a box with a 
mirrored bottom and top. A photon is emitted from the bottom and bounces off the top 
and returns to the bottom. The round-trip time is a unit of time—one tick of the clock. 
Suppose that M’s ship is carrying the light clock shown below. 
 
 

.75 1.51 0.66 

.90      2.29 0.44 

.95 3.20 0.31 

.99 7.09 0.14 
.9999    70.71  0.01 

   1.0000 ∝ 0.00 
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                                 L                          L 
 
 
                                                                 
 
To M, an observer on the light clock, light travels a distance of 2L in one time-unit. 
Because light travels at velocity c, a time unit is t’ = 2L/c. 
 
 
 
 
 
 
                                                         L 
 
 
 
 
 
                                              ½vt                   ½vt 
 
But to S, an observer sitting in a fixed position outside the light clock, M’s light clock 
moves leftward relative to S at velocity v. The (proper) time on the light clock will be  
t’ = 2L/c because it is “at rest” with itself. But to S the clock is moving and the photon 
will be seen as following the path shown above. 
 
The distance traveled by the photon (as seen by the stationary observer) on the upward 
path is, by the Pythagorean Theorem, √[L2 + (½vt) 2]. The down-path distance is the 
same, so the total distance traveled is 2√[L2 + (½vt) 2] and the time taken for the round-
trip is t = (2/c)√[L2 + (½vt) 2]. This can be written as t = √[t’2 + β2t2], so t = t’/√(1 - β 2). 
S’s measure of time is M’s proper time dilated by the effects of motion. 
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Length Contraction with a Light Clock 
 
Suppose that the light clock is laid on its side, and that it moves leftward at velocity v. 
Consider the picture below. In the time (t1) that it takes for the photon to be emitted from 
one end (point a) and received at the other end (point b) the clock has moved distance L 
+ vt1.  
 
 
                                                                                   L  
 
                                                                                                       
                                             b                                                         a 
 
                                                        vt1                                  vt1 

 
                                                                      L 
 
    
                                             b                            a 
                                                                                           
                                                                               vt2   
 
The photon is then reflected back from point b but it only travels L - vt2 in the time 
before it is received at point a; the reason is that the return trip is shorter because the 
clock’s detector has moved another vt2 units to the left during the return trip. 
 
The simple approach to seeing length dilation is to note that the round trip distance a-b-a 
on the clock as measured by M, an observer on the clock, is proper distance 2L’ at 
velocity c in proper time t’ = 2L’/c. But to a stationary observer the photon covers a 
round trip distance of 2L at velocity c in time t = 2L/c. 
 
Now, from time dilation we have 
 
                                               t = t’/√(1 - β2) 
 
from which, since t = 2L/c and t’ = 2L’/c, we get 
 
                                              L = L’/√(1 - β2) 
 
A more detailed story is that in S’s frame the time taken for the round trip is  
t = L’/(c-v) + L’/(c+v), or t = 2(L’/c)/(1 - β2). Because time dilation gives  
t = t’/√(1 - β2) we have t’ = 2(L’/c)/ √ (1 - β2). But t’ = 2L’/c, so L = L’/√(1 - β2).                                         
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3.2 The Relativity of Mass 
 
Let m’ refer to proper mass—the mass of an object traveling with the spaceship as seen 
by its pilot, and m refer to relativistic mass—the mass of that object as seen by S. Just as 
time and distance are dilated by relative motion, so also is the object’s mass.  Mass is 
defined in several different ways: because momentum is mass times velocity (p = m’v), 
mass is momentum divided by velocity (m’ = p/v); because force is mass times 
acceleration (F = ma), mass is force divided by acceleration (F = F/a).  So if one knows 
momentum and velocity, or force and acceleration, mass can be calculated.  [Note that 
force is the rate of change of momentum with respect to proper time (F = dp/dt’ = m’a)].  
 
For an object moving slowly relative to the speed of light, the force required to achieve 
acceleration rate a is m’a. But the higher the velocity of the object, the greater the force 
required to maintain acceleration rate a, and as v approaches close to c, the force required 
becomes infinite. The reason, we shall see later, is that at high speeds proper mass is 
unchanged but mass (m), as seen by S, become infinite as v approaches c. For this reason, 
c is the cosmic speed limit: nothing can move faster because at v = c mass is infinite and 
any acceleration would require infinite force. 
 

Box 3 
Implications of Time and Space Dilation 

 
•  In the limit, if M is moving at the speed of light, M ‘s time will stop relative to S’s time. If M is  
    on a spaceship being drawn into a black hole at the speed of light, a distant observer will see  
    the spaceship as frozen in time and space even though M sees himself moving at lightspeed. 

 
•  A muon is a very short-lived particle, created by cosmic rays hitting atoms in  
     Earth’s upper atmosphere. Muons appear and disappear in 0.000002 (two  
     Millionths) of a second, during which they travel about 0.372 miles. Yet we can  
     observe the muon in detectors on the Earth’s surface! The reason is that the  
     muon moves at close to the speed of light, so a .000002 seconds in its proper time  
     translates to an observable interval of time on our clock. If a muon moves at  
     0.9999c, it will exist for 0.000141 seconds Earth-time and travel a distance of  
     26.3 miles in Earth-distance. 
 
•  The faster M is traveling, the shorter M’s spaceship will seem to S. In the limit,  
      if M is traveling in a spaceship moving at the speed of light, the length of M’s   
      spaceship will be seen by S as zero. 
 
•  A lightbeam leaves Alpha Centauri.  In Earthtime (t) it takes 4 billion years to  
     reach earth.  But in its own time (t’) it reaches earth instantaneously. 
 



 
 

 11 

The relativity of mass was postulated by Einstein as a result of the Law of Conservation 
of Momentum; it has withstood numerous experiments.  This development will be 
discussed later. 
 
If m’ is the rest mass of an object traveling with M, as measured by M, then we find that 
the relativistic mass, m, as measured by S is m = γm’.  Later we return to a deeper 
explanation of relativistic mass. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
3.3 The Relativity of Simultaneity 
 
We are accustomed to the idea that if we see two events as simultaneous (or one as 
preceding the other), every other observer will agree to that ordering. But Special 
Relativity argues that this is a classical notion that breaks down when there is relative 
motion. 
 
Einstein used a thought experiment to give a simple explanation of how simultaneity 
breaks down when there is relative motion.  Suppose observer S is standing on a platform 
as a train goes by at velocity v.  One of the cars is rigged with a light at each end.  Just 
when the midpoint of the car passes S the conductor turns both lights on.  At that very 
moment a passenger M is sitting in the middle of the moving car exactly across from S. 
The setup is shown below.                                                                 
                                                             Car           v 
 
                                  

 
 
 
 

s 

      M  M1 

Box 4 
Mass Dilation 

 
                                                       m = γm’ 

 

   • The Large Hadron Collider in Zurich accelerates protons to 99.9999 percent 
      of the speed of light.  If m’ is the rest mass of a proton, the relativistic mass of  
      the proton is about 70m’: an observer outside the LHC sees the mass as  
      increased 70-fold. 
 
   •  An asteroid approaches the earth at one-tenth of light speed.  The asteroid’s rest  
       mass is m’.  The relativistic mass of the asteroid when it hits the earth is  
       1.005m’. If the object is moving at 95% of lightspeed (β = .95) its mass is 3.2  
       times its rest mass.  As velocity approaches the speed of light, relativistic mass  
       becomes infinite.   
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S will see the first photons from each light at precisely the same moment because when 
the lights came on the distance from each light to S is the same, and because light travels 
at speed c regardless of the motion of the source; so to S they came on simultaneously.   
 
But M does not see the lights as coming on simultaneously; he sees the forward lights 
coming on first because while the first photons from each light had been coming toward 
him at velocity c, he has moved rightward with the car to M1 so photons from the forward 
light have a shorter distance to travel before reaching M’s eyes. 
 
So Einstein has shown that two observers will not necessarily agree on whether events 
are simultaneous if one observer is moving relative to the other. 
 
3.4 The Twin Paradox: Symmetry of Spacetime Translations 
 
We have seen that S measures the space and time of a moving object differently than 
does an observer on the object: both time and distance are expanded when translating 
from M’s frame to S’s frame.  This says that S will view M as moving in slow motion 
and that S sees himself as aging faster than M. 
 
What about the view from M’s frame?  It is identical: M thinks he is stationary and that S 
is speeding away from M.  So M will view S as in slow motion, and believe that he, M, is 
aging faster than S. 
 
So both see the other as aging slower.  And each will measure the other’s distances as 
shorter.  Which is right?  The answer is—both! Or neither!  Well, you can’t “really” say 
unless you can directly compare ages: time is relative! 
 
This apparent inconsistency gives rise to the famous Twin Paradox.  Two twins on earth 
are given different tasks.  One is to stay on earth while the other departs rightward in a 
spaceship at rapidity β.  Each has an instantaneous view of the clock at the other’s 
position (actually, that is impossible because of the time it takes for a signal to travel 
between S and M; but we assume it is possible).  Each records the readings of the other’s 
clocks and determines relative ages.  We know that each will record the other as aging 
slower. 
 
At some point M’s spaceship reverses direction and heads directly back to earth at the 
same rapidity.  The path taken is shown in Figure 2 below: From t = 0 to t = ½ t1, M’s 
ship is outbound on segment 0A.  At A it reverses direction (we ignore the need to 
decelerate, turn, and accelerate back to the initial velocity) and a t = ct1 the twins are 
reunited. 
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                                                   Figure 2 
                              The Twin Paradox Path 
 
                          ct 
                        ct1 
 
 
 
                     ½ ct1                                    A 
 
 
                          0                                                        x 
 
 
Both will have recorded the other as younger.  But is one really younger? The answer is 
that M, the spaceship twin, is younger than S, the earthbound twin, and the age difference 
increases with higher rapidity.  It is possible that M returns to Earth to find that his twin 
is long dead. At the extreme, if the spaceship is going at light speed, M will not have 
aged a bit while S will be quite a bit older, or, perhaps, has crumbled to dust.  
 
We will return to this paradox when we have established the mathematical foundations of 
Special Relativity.  
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4. The Mathematics of Special Relativity 

 
4.1 The Lorentz Transformation 
 

The mathematical basis of Special Relativity was created before Einstein but its 
implications were overlooked.  In the late 19th century Hendrik Lorentz, a Dutch 
physicist, postulated that space and time are transformed by motion. The Lorentz 
Transfomation addresses the translation of one coordinate system into the coordinate 
system moving relative to the first system. 

 
Observer S is in an inertial frame (x, ct) and observer M, moving at velocity v in the x 
direction relative to S, is in another inertial frame (x’, ct’).  Both  distance (x or x’) and 
time (ct or ct’) are measured in equivalent units—light-seconds.  
 
The Lorentz transformation describes the relationship between the two frames as 
 
                                      (1a)     x’ = γ(x – βct)       
                             and      
                                      (1b)   ct’ = γ [– βx + ct]  
 
for M’s proper time and distance as functions of S’s time and distance. Inverting the 
relationships, S’s perception of M’s proper time and distance are 
 
                                      (2a)    x = γ (x’ + βct’)      
                             and      
                                      (2b)    ct = γ [βx’ + ct’] 
 
If there is no relative motion the classical transformation applies: when v = 0, then γ = 1 
and the transformation from S’s perspective to M’s frame is the classical Newtonian 
transformation described in the second section: 
 
                                      (3a)     x’ = x – vt       
                             and       
                                      (3b)     t’ = t 
 
But when rapidity is high, the Newtonian transformation fails.  
 
A strange thing happens when β = 1 Noting that light speed in both frames is equal, i.e., 
x/t = x’/t = c, we get 
 
                               (1a)     x’ = γ(x – ct)  = 0    
                       and    
                               (1b)   ct’ = γ [– x + ct]  = 0 
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That is, when M is traveling at the speed of light he sees all distances as zero (he is 
“everwhere”) and all times as zero (he is “everywhen”). Because only photons and other 
massless particles can travel at light speed, a photon leaving Alpha Centauri arrives 
instantaneously at Earth (because its distance from Earth is zero) even though we see it as 
traveling for four light-years! This is a very perplexing, but correct, idea. 
 
 

 
 
4.2 Minkowski Diagrams and Minkowski Space 
 
Hermann Minkowski was one of Einstein’s professors at the Swiss Federal Institute of 
Technology in Zurich.  In 1908, following Einstein’s 1905 paper on Special Relativity, 
Minkowski wrote a paper elucidating the new theory by describing the spacetime 
geometry implied by Special Relativity.  The result has become enshrined in the 
Minkowski Diagram and in the notion of Minkowski Space. 
 
Under a Lorentz Transformation the coordinate system for S is the familiar Cartesian 
system (x, ct) shown below in Figure 3:  S’s position is x light-seconds from the origin, 
and his time is ct light-seconds from the initial time; both are chosen to be zero at the 
outset (Note that a light-second is used as both a unit of time and a unit of distance). The 
dashed red line in the diagram below represents a light ray from the origin; it is at a 45º 
angle (slope = 1) because both axes are measured in the same units, light-seconds: any 
point on the lightline represents velocity v =c, at which x/t = c or ct =x. 
 
 The coordinate system of a moving observer, M is (x’, ct’); it is described above by 
equations (1a) and (1b). This is represented in Figure 3 by a rotation of the time and 
space axes, as shown by the blue and green rays. The blue line is the moving object’s 
timeline, showing all of M’s possible positions in time when he is at distance x’ = 0; the 
green line is his spaceline, showing all of M’s possible positions in space when he is at t’ 
= 0.  Both lines start at the origin because we assume a starting position of  t = t’ = 0 and 
x = x’ = 0. 
 
The effect of relative motion is to rotate M’s timeline clockwise from S’s by angle θ, and 
to rotate M’s spaceline counterclockwise by the same angle; that angle of rotation is  
θ = arctan(β)—it increases as v rises, reaching 45º when v = c, i.e., when β = 1. When M 
is moving at light speed both his timeline and his spaceline will coincide with the 
lightline because their slopes approach 1 as β approaches 1. In this case M is “everwhere” 
and “everywhen.” 

Box 5 
Time and Distance Dilation 

 
                                                        t /’t =  1/√(1 - β2)   
 
                                                        x/x’= 1/√(1 - β2) 
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                                               Figure 3 

Minkowski Space 
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For example, at point (x0, ct0) in S-space, M is at (ct’0, x’0): ct’0 is the distance from 0 to 
ct’0 on the blue ray; this is not equal to the distance from 0 to ct0 on the vertical axis, as 
we will soon see. Similarly, the distance from 0 to x’0 on the green ray is not equal to x0 
on the horizontal axis. Thus, relative motion changes the units of time and distance 
measurement.  
 
What is the relationship between a unit of S’s spacetime and a unit of M’s spacetime? 
How many “inches” along M’s timeline are equivalent to one “inch” along S’s timeline?  
 
Consider the event at A, that is, at (x0, ct0) in S-Space. Suppose that event A is at  
(ct’0, x’0) = (0, 1) in M’s coordinate system. From the Lorentz Transformations  
x = γ (x’ + βct’) and  ct = γ (βx’ + ct’) we see that the point (0, 1) on M’s timeline and 
spaceline maps to (γβ, γ) on S’s timeline.  Therefore (x0, ct0) on S’s timeline is equivalent 
to (γβ, γ) on M’s timeline. 
 
Using the Pythagorean Theorem we find that the distance 0A on ct’ (M’s timeline) is  
ct’ = γ√1 + β2 = √(1 + β2)/ √(1 - β2). Thus, 
 
                                    one unit t’ = √(1 + β2)/ √(1 - β2) units of t 
 
It can be shown that the same applies to distance, that is 
 
                                    one unit x’ = √(1 + β2)/ √(1 - β2) units of x 
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So, to measure M’s distance using S’s distance and time on a Minkowsi Diagram, we use 
the transformations in Box 6:  

 
For example, suppose that A is at one inch along S’s timeline and 1.5 inches on S’s 
spaceline.  If β = 0.95 the distances along M’s time and space lines will be 4.44 times the 
distances to A along S’s axes. [Note that this translation refers to distances in the 
Minkowski diagram: one “inch” on M’s timeline is √(1 + β2)/ √(1 - β2) inches on S’s 
timeline.  It does not refer to the amount of time or distance dilation—that is measured by 
γ = 1/√(1 - β2).] 
 
4.3 The Geometry of Minkowski Space 
 
What are the numerical values of  (x’0, t’0) associated with  (x0, t0)?  To answer this we 
have to fill in more of the family of M-space timelines and spacelines, as in Figure 4. 
Figure 4 shows the geometry of M’s spacetime as seen by S (only the first quadrant is 
shown). Each green line, denoted as x’|ct’n, is a spaceline showing all possible values of 
x’ associated with a single value of ct’n; thus, the green line labeled x’|ct’2 is all values of 
x’ that can occur when t’ = t’2. Each blue line, denoted as ct’|x’n, is a timeline showing all 
the possible values of ct’ associated with a single value of x’; the blue line labeled ct’|x’2 
is all values of ct’ that can occur when x’ = x’2. 
 
The dashed red line is the timeline for a light ray starting at 0, where t = x = 0.  This is 
also the point where the lines for x’0 and ct’0 intersect.  Note that (x’0, ct’0),  (x’1, ct’1), 
and (x’2, ct’2) are all points on this lightline.  Note that the timeline and spaceline that 
intersect on the lightline all have the same angle with the lightline.  This (and 
manipulation of the associated Lorentz equations) tells us that for all points on the 
lightline we have x’/t’ = x/t = c, that is, the velocity of light is the same for both S and M; 
c is an invariant magnitude.  Recall that this was one of Einstein’s two postulates. 
 
Any event in spacetime can be translated between S-space and M-space using the algebra 
underlying Figure 3.  Thus, point A is an event at (xa, ta) in S-space.  How do we 
visualize that position in Minkowski space? We can’t do it using the Euclidean world of 
right angles because M-space is not Euclidean; it is “twisted.”  So here’s how its done.  
Find the spaceline x’/ct’ for M that passes through the event A: this, we see, is spaceline 
x’| ct’2, so we know that t’3 is the M-time.  Follow that spaceline northwest to the A (at 
the red dot), where that spaceline intersects the lightline.  Now find the timeline that 
passes through the same point on the lightline: it is ct’/x’2, so we know that the event A 
occurs at (x’2, t’2) in M-space.   

Box 6 
Mapping S-Space to M-Space 

 
                                 one unit t’ = √(1 + β2)/ √(1 - β2) units of t 
 
                                 one unit x’ = √(1 + β2)/ √(1 - β2) units of x 
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     Figure 4                                                                 
                                    The Geometry of Spacetime                          
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4.4 The Invariance of the Speed of light 
 
Recall that Special Relativity postulates that the speed of light is c for all frames. In order 
for the speed of light to be the same for both S and M, it must be true that distance 
traveled divided by time taken equals the speed of light in each frame, i.e., x’/t’ = x/t = c. 
We have seen that Special Relativity implies x’ = x√(1 - β2) and t’ = t√(1 - β2).  Thus, 
since v = x/ct and v’ = x’/ct’ we get 
                            
                                    x’/ct’ = x√(1 - β2)/ct√(1 - β2) = x/ct 
 
The speed of light is the same for both observers.  

 
This can also be seen in the Minkowski diagram: time and spacelines always intersect on 
the lightline, which bisects the time and space lines. 
 
  

x’|ct’1    

      cta    
A 

x’|ct’2 

ct’|x’1 ct’|x’2 ct’|x’0 
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4.5 The Relativity of Simultaneity and Causality 
 

Stationary observer S is inclined to say that if two events are revealed to him at exactly 
the same time, they are simultaneous.  He also might believe that if event A is observed 
before event B, B could not have caused A because to do so would be to send information 
back in time, a Special Relativity no-no;  he might also argue that if A precedes B, A 
caused B (though this is not necessarily the case because A could have independently 
occurred before B, and because the fact that A occurs before B does not mean that B was 
caused A. 
 
But Einstein’s theory shows that “simultaneity” is a relativistic concept: what appears as 
simultaneous in S’s frame will not generally be viewed as simultaneous in M’s frame 
which is moving relative to S.  Also, if S sees A as preceding B, M might see B as 
preceding A.  In other words, there is no absolute simultaneity or order-of-events! 
 
Suppose that S sees two light bulbs go off at different distances but at the same time. S 
says that the two flashes are simultaneous. But S sees M as observing that one goes off 
before the other. Consider the Minkowski Diagram below. 

 
 

Figure 5 
Simultaneity in Minkowski Space 

   
 
 
 
 
 
   ctta,b            b              a  
                            
     ct’b 
     ct’a 
    
 
 
 
 
 
 
 
At time ta,b  S sees a flash of light “simultaneously” at points a and b. But M sees flash a 
at time t’a, before the flash at b at time t’b. Simultaneity for S is not simultaneity for   



 
 

 20 

 
4.6 The Twin Paradox Revisited 

 
Suppose that M, the twin on the spaceship, travels forever relative to his twin S. Which 
observer, S or M, ages more slowly?  The question is meaningless: S sees M’s clock as 
slower, but M sees S’s clock as slower. Since the two will never come together, 
comparison of ages to find “the truth” is not possible. 
 
But now suppose that S stays on Earth while M departs in a spaceship in the rightward 
direction at velocity +v. After a few years of travel, the spaceship reverses direction and 
returns to Earth at velocity -v.  
 
Now the twins will come together. Which will actually have the grayer hair at that time?  
 

Figure 6 
The Twin Paradox in Minkowski Space 
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In Figure 6 M departs from Earth on a spaceship traveling rightward at velocity v along 
the heavy black line; at Earth time ct0 M is x0 light-years from Earth—at event A.  M’s 
ship time is ct’0 which sets the upward-sloping green spaceline labeled “x’|ct’0 
(outbound)” and the blue timeline labeled ct’|x’0 (outbound) that are in effect when the 
ship reverses direction at proper time at ct’0 and proper distance x’0.  
 
At the moment of reversal the entire frame of Minkowski space changes dramatically.  
The spaceline and timeline at that moment when the ship begins on it return journey flip 
to the lines labeled “inbound” and the origin is set at A.      
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The proper time ct’0 is shown twice on the vertical axis: the lower ct’0 is the proper time 
the instant before M turns, and the upper ct’0 is the same proper time but when the ship 
starts its return flight.  Of course, ct’0 is a fraction of S’s time at the moment of reversal 
ct0; the fraction is the by-now-well-known √1 - β2. 
 
So at proper time ct’0  (coordinate time ct0) the ship reverses direction and returns to 
Earth at the velocity -v.  The time of the ship’s return to Earth is Earthtime ct1. At that 
time, the Earth and ship clocks can be directly compared. The spaceship clock will have 
moved more slowly:  it will be 2ct’0 while the Earthtime will be ct1.  There will be a 
significant segment of Earthtime—denoted by the heavy red arrow on the left—that is 
simply “skipped” as if the mere reversal of the ship’s direction has made earthtime jump 
forward. 
 
The moving twin will have aged more slowly! For example, if the spaceship is traveling 
at β= .95, elapsed proper time for the entire trip is 62% of elapsed earthtime. The 
remaining 38% of earthtime will have been “lost in time” when the ship reversed 
direction! If the outbound and inbound trips are each 10 years in earthtime, the 
Earthbound twin will be 20 years older but his astronaut twin returns only 12.4 years 
older. 
 
What has happened? Well, it all has to do with the ship’s acceleration when it reversed 
direction (acceleration is not simply change in speed, it is also change in direction).  The 
shape of spacetime has altered with the ship’s reversal and the new spacelines 
(represented by the inbound lines) have come into play.  So Special Relativity implies 
that accelerating motion has a different effect on spacetime than does uniform motion.  
This would not be fully understood until Einstein introduced General Relativity in 1915. 
 
Is the “lost time” really lost? Does S’s record of time suddenly skip through the period of 
M’s reversal, like a needle on a cracked phonograph record?  Clearly not—S experiences 
every moment of the “lost time.”  But he sees the ship’s reversal as taking up all of that 
time—in his view the ship just stops and very very slowly turns during the “lost time,” 
then it begins its return to Earth. 
 
 



 
 

 22 

5. Hyperbolic Spacetime: An Alternative View 
 
The theory of Special Relativity appears to reject any concept of absolute time or space 
that is invariant to the relative motion of observers. But there are attributes that are 
invariant.  One absolute concept embedded in special relativity is the invariant interval, 
also called the spacetime interval. 
 
5.1 The Invariant Interval 
 
The invariant interval is the distance between events in spacetime. Denoted as s, it is 
defined as s2 = (ct)2  -  x2  for  S’s observation of his spacetime, and s’2 = (ct’)2  -  x’2 for 
M’s observation of his (M’s) spacetime.  While S and M can’t agree on time and distance 
as separate features of spacetime, they do agree on the invariant interval in spacetime. 
 
The invariant interval describes the geometry of spacetime as hyperbolic rather than 
Euclidean.  The figure below shows this. The 45 lines show travel at light speed.  The 
vertical red line is S’s timeline, while the canted red line is M’s timeline; both end at the 
bowed line representing the hyperbola associated with a specific spacetime (s); this is one 
of an infinite number of hyperboles, one for each possible interval.   
 
                                           Figure 7 
                     Hyperbolic Spacetime and an Invariant Interval 
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- x                                                                                                                    +x 
 
 
 
 
Thus, at A and B we have both S and M agreeing that they are at the same spacetime. 
Because x = 0 for S on his timeline, he calculates the invariant interval at A as  
(sA)2 = (ctA)2; for M at point B, the invariant interval is (s’B)2 = (ct’B)2  -  (x’B)2.  Both 
points are on the same hyperbolic line so sA = s’B.  Note that this equality generates a 
familiar result: If sA = s’B then t’ = t√1 - β2. We are back to time dilation via a different 
route! 
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Note that At events A and B both observers agree on their position in spacetime, but S 
(who is at A) attributes all his travel to movement through time and he attributes M’s 
motion to travel through both space and time. Because M has traveled more in space than 
S, and because the spacetime interval is the same for both, M has necessarily traveled less 
in time than S—time dilation again.  
 
This raises an interesting question: does the speed of travel through spacetime depend on 
the time versus space breakdown of that travel?  Is travel through one dimension slower 
than travel through the other? 
 
5.2 Velocity of Motion in Spacetime 
 
Consider the following figure, in which M travels through spacetime from A to B.  The 
invariant interval traveled, Δs, is composed of two parts: cΔt is travel through time and 
Δx is travel through space; this is because (Δs)2 = (cΔt)2 – (Δx)2. 
 
                                       Figure 8 
                             Travel in Spacetime 
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Any measure of speed travelling through spacetime requires a measure of distance and a 
measure of time taken to travel that distance.  Both must be invariant:  the distance and 
time measures should be agreed on by all observers, as should the measure of velocity.   
 
An invariant measure of spacetime time is Δs’/c: Δs’ is M’s spacetime distance and c is 
distance per unit of time, so Δs’/c is in units of time. An invariant measure of velocity is 
Δs’/(Δs’/c): Δs’ is distance in spacetime and Δs’/c is time. But Δs’/(Δs’/c) = c: M’s 
velocity as he travels through spacetime is c, the speed of light! S travels only in time, so 
he also travels at velocity c. All objects traveling through spacetime move at the speed of 
light!  
 
But the breakdown between travel through time and through space will be different for 
every observer: M is moving through both space and time, so if he travels through the 
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same invariant interval, also at velocity c, he must be traveling through a shorter time to 
make up for his movement through space. Time dilation again again! 
 
5.3 Classifications of Spacetime 
 
The invariant interval defines three classes of events: 
 

1. Timelike Separation: if s2  > 0 then x/t < c and x’/t’ < c: Events with timelike 
separation occurs at a position with velocity less than the speed of light. This 
means that these events fall into the zone above the light-ray in a Minkowski 
space, as shown below. For events with timelike separation, communication 
between S and M is possible a sub-light velocity. The two events can be linked by 
sub-lightspeed signals. 
 

2.    Lightlike Separation: if s2  = 0 then x/t = c and x’/t’ = c. Events with lightlike   
       separation lie along the lightline and communication between them by light  
       pulses is possible, but no slower-than-light communication is possible.  

 
3. Spacelike Separation: if s2  < 0 then x/t > c and x’/t’ > c. Events with spacelike    

separation lie below the Minkowski space light ray and communication between 
them by light pulses or any other means is not possible. Neither event can be 
linked to the other.   

 
                                                Figure 9 

Spacetime Classifications 
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6.  Force, Mass, Momentum and Energy 
 
The most famous equation in physics is E = mc2: Energy equals mass times the speed of 
light squared.  This is a direct outgrowth of Special Relativity. We have two important 
pieces of information necessary to derive that famous equation:  All motion in spacetime 
is at the speed of light, and the Law of Conservation of Momentum applies even when 
there is relative motion. 
 
6.1 Relativistic Mass 
 
Most particles have mass; photons and neutrinos are the most well known exceptions.  
Rest mass, denoted by m’, is the amount of “stuff” in an object, independent of the effect 
of gravity (which determines the weight of that stuff).  Mass is defined by the force 
required to accelerate an object: using Newton’s second law of motion F = ma (force 
equals mass times acceleration), rest mass is m’ = F/a.  The SI units are kilogram for 
mass, meter per second per second for acceleration, and the Joule for force or energy.   
[Note: Force is defined as the derivative of momentum (p = m’v) with respect to proper 
time, i.e. F = d(m’v)/dt’.]  
 
As the velocity—hence momentum—of a particle increases the force required to 
maintain a specific rate of acceleration increases.  We have seen that relativistic mass is 
m = γm’, where m’ is the proper mass (rest mass) and γ is the time dilation factor,  
i.e. γ = 1/√1 – β2).  Note that as an object’s velocity approaches the speed of light, its 
mass becomes infinite.   
 
While m = γm’ is an exact relationship, there is a convenient approximation, that helps to 
understand the components of relativistic mass. Because γ is (approximately) equal to 
 1 + ½β2 the relationship in Box 7 can be derived. 
 
 
 

 
 

 
 
 
 
 
 
 
 
 

Box 7 
Relativistic Energy-Mass Equivalence 

 
                                E = m’c2     +   ½β2m’c2   

 
                           
                                      Rest     Kinectic 
                                    Energy    Energy 
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The assumption underlying the common description of energy, E = m’c2, is that the 
object is not in relative motion, i.e., β = 0. When there is relative motion at low 
velocities, the approximation in Box 7 is valid.  At high velocities, the exact equation for 
relativistic mass, E = γm’c2, should be used  
 
6.2 Momentum and its Conservation 
 
In classical mechanics the momentum of an object is an important concept.  Momentum 
(p) is rest mass times velocity: p = m’v.  Momentum, like energy-mass, is conserved, that 
is, it is not changed by any fragmentation of an object or by integration of pieces. 
 
Suppose that a system has an initial state with objects moving about, each with a 
momentum pi= mivi, giving a total net momentum of P = Σmivi. Suppose also that the  
rest mass of this system is M = Σm’i. For example, the planets, asteroids, rocks, and dust 
in our solar system are all objects, each with its own mass and momentum relative to 
Earth.  The Law of Conservation of Momentum (LCM) states that any collisions between 
objects, though they might change the mass and velocity of individual objects, will not 
change P, the total momentum.  Ignoring conversions of mass into energy (as into heat 
generated by collisions) those collisions will also not change the system’s total mass, M. 
 
The LCM is very well established in classical mechanics, but it was not known whether it 
held up under relative motion, when different inertial frames exist “simultaneously.”   
Einstein postulated that the LCM applies even then, and from that derived the notion that 
mass increases with velocity.  Experiments have confirmed Einstein’s conjecture. 
 
A simple thought experiment is constructive.  Consider a billiard table on which two 
balls, each with the same mass and equal speed, are traveling directly at each other.  The 
one going left to right (ball G, green) has velocity v, and the one going right to left (ball 
Y, yellow) has velocity –v.  The system (billiard table) has a zero net momentum:  
P = mv + m(-v) = 0.  After the two balls collide—that point is called the center of 
momentum—they reverse their directions and have lower but still equal speeds, v* but 
opposite directions: the velocities are -v* (left ball) and +v* (right ball).  The net  
momentum P = m(-v*) + mv*, is still zero. Momentum is conserved. 
 
Now consider a similar situation in which the two balls are coming at each other, but 
slightly off center so that now they will glance off at lower speed but exactly opposite 
directions, as in the layout below. 
 
After the collision, G and Y both go in opposite direction at velocities v* and –v*, where 
v* < v because of the loss of energy due to the release of sound and heat in the collision.  
The new net momentum is P* = mv* + m(-v*) =0.  Momentum of each ball has changed 
because of the change in direction and speed, but total momentum is unchanged. 
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This is the essence of the Law of Conservation of Momentum in a classical framework.  
But what are the implications if the Law of Conservation of Momentum is valid in a 
relativistic framework, when the velocities of Y and G are near light speed?  To see this 
we repeat the billiard table below. 
 
6.3 Relativistic Force, Mass, and Acceleration 
 
The billiard table thought experiment, when translated to high velocities, is a simplified 
picture of two protons colliding in the Large Hadron Collider: the protons approach each 
other along the x-axis, collide, glance off at the same angles, and proceed at lower but 
equal speeds in a new direction. We assume that there is no decay into smaller particles 
(as would occur in a proton accelerator) and that no energy is lost in the collision. 
               
The motion of each proton after the collision is a combination of motions along both the 
x-axis and the z-axis.  This is shown below, where we reproduce the billiard table and 
explicitly note the vertical y-axis and the horizontal x-axis that intersect at the COM.  
 
In Figure 10 the post-collision arrows are momentum vectors in the two dimensions, so p 
(the length of the arrow) is momentum, px is momentum along the x-axis (m’vx) and py is 
the momentum along the y axis (vy).  The proper net momentum of, say, the green 
proton, is defined as p’ = m’v  = m’√(vx

2 + vy
2) where m’ is the rest mass of the proton.  

 
What is the momentum as measured by a stationary observer, say a physicist sitting at the 
center of momentum (COM)?  Well, velocity is an invariant attribute so he and the proton 
would both measure the same velocity of the proton. But the mass is not invariant:  the 
COM will measure the mass as γm’; this is the relativistic mass. So the COM measures 
the momentum as p = γm’v. 
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Figure 10 
Proton Collision in a Collider 
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Why does relativistic mass dilate by the same proportion as does time or distance?  The 
answer is that relativistic mass is different from rest mass precisely because of the 
dilation of time. To see this, recall Newton’s second law: F = m’a.  Proper force, the 
force seen by the proton, is the derivative of its momentum with respect to proper time, 
i.e. F’ = d(m’v)/dt’ = m’a where a = (dv/dt’) is proper acceleration. In order to convert 
this to COM’s measure of the acceleration (i.e., dv/dt) we only need to note that  
dt’/dt = γ, then multiply (dv/dt’) by γ to get COM-force: F = γm’a. Since mass is defined 
as F/a, we have “discovered” that for a stationary observer, the mass of an object in 
motion is γm’. [The same result is found when the decomposition into x and y velocities 
is considered: the only change is that acceleration is defined as a = (vxax + vyay)/v; 
acceleration is a weighted average of the x-acceleration and y-acceleration, with the 
velocities as weights.] 
 
Note that it is not really the mass that is increasing. The proper mass is unchanged; it is 
the time unit of acceleration that is changing due to translation from moving to stationary 
observers. But whatever the source, the effect is as if mass had increased—it takes greater 
force to accelerate a moving object—and it is conventional to attribute this to mass. 
 
6.4 The Equivalence of Mass and Energy: Why is E = mc2? 
 
During 1905, Einstein’s annus mirabilis, he published four world-changing papers.  
Included were his paper on Special Relativity and a short two-page follow-up paper on 
the equivalence between mass and energy in which he concluded that E = mc2.  
 
We have seen though the breakdown between space and time movements depends on the 
observer, all objects move through spacetime at the rate c, the speed of light.  Thus, in 
spacetime, a moving observer’s proper momentum is p’ = m’c and that momentum, as 
seen by a stationary observer traveling through time only, is p = γm’c.  This allows us to 
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draw Figure 8 in which the length of the hypotenuse is M’s momentum (m’c), the vertical 
leg is momentum through time (γm’v)—this is S’s view of M’s momentum.  The 
horizontal leg is momentum attributable to motion through space (γm’v).  
 
                                           Figure 11 
                                    Momentum in Spacetime 
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If we multiply each leg by c—an invariant number—we get Figure 12.  
 
                                         Figure 12 
                                    Energy in Spacetime 
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Figure 12 converts Figure 11’s momentum  into a view of energy. The hypotenuse in 
Figure 12 is the rest energy or proper energy as seen by M.  The vertical leg (travel 
through time only) is relativistic energy, composed of both rest energy and kinetic 
energy, as measured by S. It implies energy-mass equivalence as shown in Box 8. 

 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Relativistic and rest energy are equal when momentum is zero; the difference between 
energy and rest energy increases as velocity—and, therefore, momentum and the Lorentz 
factor—increase.  The kinetic energy of the object is the contribution of γpc to E. 
 
 
  
 
  

Box 8 
Energy-Mass Equivalence 

 
                                        E =   √(E’2 + γp’c) 
 
                           where  
 
                                      E’ = m’c2 is rest energy (in Joules) 
                                      p’  = m’v is proper momentum 
                                      E  = m’c2 is relativistic energy (in Joules) 
                                       c  = 3,000,000 m/sec 
                                      m’ = rest mass in kilograms 
                                        v = velocity in m/sec 
                                       
• One kilogram of mass is equivalent to 9x1016 Joules (= 1kg x 300,000,0002 m2 /sec2)  
   of rest energy.  This translates to 25 billion kilowatt-hours of power, or 0.61 
   percent of U.S electricity consumption in 2010. 100 kilograms of matter, if converted  
   with perfect efficiency into electricity, would provide 61 percent of U.S. electricity! 
 
• A 1000 kilogram missile has been launched by the Klingons at the U.S.S. Enterprise.  
   Its rest energy is 9x1019 J. Its velocity is 99 percent of light speed, giving  
   γp’c = 21.06x1019 J.  The percentage increase in energy due to motion is  
    (approximately) a miniscule 1.17x10-17 percent, or 1,053 Joules.  This is 0.003 KWH 
     of kinectic energy compared to 2.57x1014 KWH of rest energy.  It takes that last one  
     percent of light speed (from β of 0.99 to 1.00) to really make a difference to the  
     impact of the missile on the Enterprises blast shield 
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7. Special Relativity Arising From Earth’s Rotation 
 
In his 1905 paper on Special Relativity Einstein suggested a test of his theory: “…thence 
we conclude that a spring-clock at the equator must go more slowly, by a very small 
amount, than a precisely similar clock situated at one of the poles under otherwise 
identical conditions.”  If true, this would create a number of practical problems, among 
them the need to make relativistic adjustments to synchronize clocks at different 
latitudes. 
 
It turns out that for reasons beyond Einstein’s understanding at the time, this is not true: 
clocks at different latitudes do nut run at different paces. but this conjecture is an 
opportunity to demonstrate the effects of relativity under conditions of constant rotation 
rather than of constant directional motion.  
 
7.1  Relativity Effects on a Rotating Disk 
 
Suppose that a perfectly round disk is rotating at a constant speed, as in Figure 13.  To 
make it concrete, imagine that this disk is the cross-section of the Earth at the equator.  
Of course, the earth is not a perfect circle at the equator, and when seen in three 
dimensions it is not a perfect sphere—it is oblate, or bulged at the equator. But 
imagination can make these imperfections disappear. 
 
                                              Figure 13 
                               The Earth’s Equatorial Disk   
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The Earth has an equatorial radius of 4000 miles (6, 400km, 64,000,000m), a circumference 
of roughly 25,000 miles (40,000 km, 40,000,000 m), and a rotation period of 23.9 hours 
(86,200 s).  Its average speed of rotation is 1,050 miles per hour (1,675km per hour, 4,65 meters 
per second).  
 
In Figure 13 N is the North Pole and the disk is the equatorial Great Circle as seen from 
the pole.  The Earth rotates counterclockwise from N (eastward).  The figure shows two 
radius lines as well as the angle between them (θ).  That angle increases as the Earth 
rotates; the speed of rotation is the angular velocity, denoted by ω (ω =  dθ/dt).  The linear 
velocity, denoted by vL  (vL = rω), is the velocity of rotation in meters per second; it is this 
velocity that is used to define rapidity as β = rω/c, so the modified dilation factor is 
 
 
                                     
 
 
 
 
 
 
 
 
 
 
The essential data to compute the dilation factor are r = 64x106 meters, c = 3x108 meters 
per second, and ω = 7.29x10-6 radians per second. Thus β = 1.552x10-9. This is an 
extremely low rapidity, so we would expects a tiny dilation factor.  And that is just what 
we get: γ = 1.000000000121.  One rotation of the Earth over 86,200 seconds would create 
a time lag at the pole of 1,043 nanoseconds in coordinate time. 
 
Thus Einstein’s conjecture is supported by Special Relativity.  The time difference would 
be slower at higher latitudes because the radius of the disk is smaller, reducing the linear 
velocity, but SR predicts that clocks will run slower at the poles and faster at the equator. 
 
7.2 The Hafele – Keating Experiment 
 
In 1971 an experiment was done to test time dilation.  Four atomic clocks were put on an 
airplane and flown around the world.  At the end, the time on each clock was compared 
to the time on a companion clock that was fixed in place at the Naval Observatory in 
Washington D.C.  This experiment does not address the possibility that time runs faster at 
lower latitudes; rather, it tests the prediction of time dilation when relative velocities 
differ. 
 
The test was done twice, first with the plane going eastward with the Earth’s rotation, 
then again with the plane going westward against the Earth’s rotation. The reason is that  

                              Box 9 
         Dilation On a Rotating Disk 
 
             γ = 1/√[1 – (rω/c)2] 
 
   r = radius of Disk (meters) 
  ω = angular velocity (radians per second) 
 rω = linear velocity 
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due to the Earth’s rotation the westward velocity of the plane was higher relative to the 
Observatory than the eastward velocity. 
 
The HK experiment considered the effects of General Relativity as well as Special 
Relativity.  It turns out that these are partially offsetting.  General Relativity predicts that 
a clock runs slower faster the weaker its gravitational field (hence the higher its altitude), 
while Special Relativity predicts that a moving clock will run faster.  The predicted time 
gains (in nanoseconds) on the air borne clocks were -40 ± 23 nsecs eastward and +275 ± 
1 nsecs for the westward flight (the ± is a reliability range).  The observed gains were -59 
±10 and +273 ± 7, respectively.   
 
The HK experiment was hailed as a definitive test of Special Relativity.  However, as 
will always happen when seminal experimental results are announced, there were some 
legitimate criticisms associated with the accuracy of the atomic clocks, the difficulty of 
piecing together results from different legs of the trip, and adjustments made by HK to 
the raw data.  This experiment has been replicated by the BBC and NPL (2005), and  
again by NPL/BBC (2011) [NPL is  Britain’s National Physical Laboratory].  Each time 
the HK results have been supported with increased predictive accuracy.  
 
The HK experiment was hailed as resounding proof of Special Relativity’s time dilation 
prediction. There is still a cottage industry of critics, a few with credentials (see the paper 
by Wang listed in the references) but their influence has waned and they are now 
relegated to the “crank” category.  
 
7.3 Does Latitude Matter? 
 
We have seen that Special Relativity predicts clock speed differentials at different 
latitudes.  But in fact, no such differentials are observed.  The reason is that Special 
Relativity is not the whole story: it applies when masses are insignificant, as when two 
clocks are free-floating in space at different velocities.  But General Relativity becomes 
important when mass-induced gravitational effects exist.  The Earth is very massive, and 
General Relativity dominates the effects of Special Relativity.  It turns out that when the 
effects of both Special and General relativity are considered, the two effects precisely 
cancel out and there are no on latitudinal time differences. 
 
As noted above, the fact that latitude does not matter to clock speeds does not negate the 
Hafele-Keating results.  Those applied not to latitudinal differences but to differences in 
relative velocities of objects at different altitudes but at the same latitude.  So while we 
don’t need to consider relativity in synchronizing clocks at different latitudes, we do need 
to consider relativity for objects orbiting the Earth, such as GPS satellites. 
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8. Summary 
 
In 1905 Einstein published four papers that revolutionized our understanding of the way 
nature works: The Electrodynamics of Moving Bodies outlined what has become known 
as the Theory of Special Relativity; Does the Inertia of a Body Depend Upon its Energy 
Content? extrapolated from the first to report that mass and energy are equivalent, and 
that the transformation between them allows the conversion of small pieces of matter into 
very large amounts of energy: one kilogram of matter can generate 25 billion kilowatts of 
electrical power if the conversion of mass to energy were perfectly efficient.   
 
Have you ever watched a plane take off and seen that as it accelerates it becomes shorter, 
heavier, and the passengers age at a slower rate? Well, neither have I.  It is happening, 
but the speeds are too low for us to notice the minute relativistic effects.  However, if we 
were watching the U.S.S. Enterprise, Star Fleet Command’s most famous vessel, we 
would certainly notice those effects as it boosted into “warp drive.”  Special Relativity is 
real! 
 
Its reality has been demonstrated in over 100 years of experiments.  Clocks on airplanes 
do tick more slowly relative to clocks on the ground, and, as predicted, the degree of time 
difference is greater for westward-bound planes than for eastward-bound planes; the mass 
of particles in Colliders does increase as their velocities—and energies—get accelerated 
to near light speed; distances traveled by decaying particles, like muons, do increase as 
their velocities rise, as does their half-life.  Nothing has ever been observed to move at 
greater than the speed of light.  Special Relativity has been tested often, and has never 
failed.  Even recent reports that new experiments revealed particles traveling faster than 
light, thereby disproving relativity, were found wrong for a very interesting reason: the 
authors forgot to adjust for relativistic effects! 
 
Even so, hope springs eternal!  Books are still written on the Relativity hoax, and the 
internet is rife with websites devoted to debunking relativity; and “paradoxes” still are 
found that are reputed to undermine the theory.  But these are the imaginings of pseudo-
scientists who don’t understand the deep complexities in Special Relativity. But 
Relativity is rife with philosophical and scientific conundrums, and those paradoxes and 
“inconsistencies” have all been resolved when they are subjected to careful scientific 
scrutiny.   
 
We are all influenced by relativity, usually in ways we would never see.  Global 
Positioning Systems rely on relativistic adjustments to coordinate times and distance 
measurements between satellites and ground stations: without those adjustments, 
cumulative navigation errors would create havoc.  Scientists make relativistic 
adjustments that make experimental results make sense.   
 
Do we all have to understand the Theory of Special Relativity?  The answer is a 
resounding “No!”  It applies only in situations of constant velocity, and its effects are 
only on scales far different from those we normally experience: velocities near light 
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speed.  Physicists, electrical engineers, and their ilk certainly need to understand 
relativity—but you and I don’t. 
 
Still, someone has to understand those effects, because we rely on them in our 
technology, and, therefore increasingly, in our lives. And it behooves us to understand 
what our technology is doing. So I hope that someone finds this review of Special 
Relativity useful in sorting through the clutter and understanding one of the most 
important scientific discoveries of the 20th century—and perhaps of all time. 
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                                            Appendix 
                       Units of Measurement and Conversions 
            
                                SI                     Poundal                  Conversions 
    
Mass Kilogram (kg) Pound (lb) 1 kg = 2.2 lbs 
    
Distance Meter (m) 

Kilometer (km) 
Foot  (ft) 
Mile (M) 

1 m  = 3.28 ft 
1 km = 0.62 M 

    

Time Second (s) Second (s)            --- 
    
Force Newton (N) 

Dyne (D) 
Pound-Force (lbF) 
 

1 N = 1 kg m/s2 

       = 1x105 Dynes 
       = .225 lbF 

    
Energy 
(Work) 

Joule (J) 
Dyne (D) 

Watt (W) 
BTU 

 1 J =  1 N m 
       = 1 W/s     
3.5x105 J = 1 KWH 
1 KWH = 3,412 BTU 

    
Light 
Speed 

299,792, 458 m/s 
299,792.458 km/s  

 983,571,056  ft/s  
 186,282 M/s 

           --- 
           --- 

    
 

 


