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Linear Algebra

This review of the basic mathematical concepts behind quantum mechanics
begins with a review of the linear algebra of Cartesian (Euclidean) Vector Spaces.
These are vector spaces underlying the graphs we have known and loved since high
school. They consist of real numbers in a rectangular coordinate system. Such a
space is referred to as an RN space, where R indicates it is based on the set of all real
numbers and N is the number of dimensions in the space.

Once we have the rules of linear algebra down, we turn to other
mathematical concepts important to quantum mechanics. Hilbert Spaces—the
spaces used in quantum mechanics—and the related concepts of observables and

operators.

Scalars, Vectors and Matrixes

There are three fundamental concepts in linear algebra: a scalar, a vector,
and a matrix. A scalar is a number, denoted herein by italics. A vector is a collection
of scalars fashioned into a row or a column. Thus, a row vector with N scalars—

called a 1 x N vector—is written as

(LA.l) <V| = [21 V2 ... Vm]

where v; (i= 1,...,M) are M scalars and <V

, called a bra, is the notation used in physics

for a row vector; v can be any symbol you want to use for the vector—often v is

used for a vector of quantum numbers, so the bra could be written <1/;| . The row

vector has dimension 1 x M because it has 1 row and M columns (“dimension” is the

number of rows is given first, so dimension = rows x columns).



A vector can also be written as a column vector, with (say) N rows and one
column—an N x 1 vector. This would be a ket, as below

Wi
w2

(LA.2) lw) =

WN

where the notation |W> denotes a column vector referred to as “ket w”. The column

vector has dimension Nx1. Note that the vector is v or w, its components are scalars
v or w, and the bra-ket notation simply tells us whether the vector is a row vector or
a column vector.

A matrix is a collection of vectors, each of the same size or dimension; the
dimension of a matrix is the number of rows times the number of columns: a matrix
with M column vectors, each with N rows, is an N x M matrix containing NM entries
(scalars, functions, whatever).

For example, suppose we have three separate 1xN column vectors denoted as

i),

v2>, and |V3> . The matrix V formed from those Kets is

Vii V21 V31
Viz V22 V32

(LA.3) V=[|v) [v,)|[vs)] = Vi3 V23 V33
VIN V2N V3N

Vector Operations
Vectors have many of the properties we are familiar with from simple
arithmetic. Among them, vectors are additive if they have the same dimensions.

The result of vector addition is the elementwise sum of the components, or

Vi + W1
V2 + W2
(LA4) V) +|w) = . F

VN + WN



The simplest vector operation is scalar multiplication—the multiplication of a
vector by a scalar. To multiply a vector by a scalar you simply multiply each element

of the vector by the scalar, as in

SV1
SV2

(LA.5) s|v) =

SVN

The effect is to change the magnitude of the vector (its length in vector space) but
not its direction.
An often-used operation is calculating the dot product (also called the inner

product). The dot product is the (post) multiplication of a bra by a ket, as in (v||w).

Both vectors must conform, that is, have the same number of elements (M = N). Also
note that in dot multiplication the row vector must come first—a 1xN vector can dot
multiply an Nx1 vector, with the result being a scalar (which is simply a 1x1 vector);
but an Nx1 vector cannot dot multiply a 1xN vector.

The dot product of (2) and (2"), (v||w), is a scalar obtained by multiplying
each scalar in({w| by the scalar in |V) that is in the same position (first v time first w,

second v times second w, and so on), then adding the results.

[V1 V2 .. VN] w1
w2
(LA.6) <V||W> = = Viw1+ VaW2 +...+ UNWN = XY vw;

The dot product tells us about the correlation between the components in
the two vectors. If the dot product is large and positive, it says that v and w tend to
move in the same direction; if it is large and negative, the vector values tend to move

in opposite directions; if it is small, they tend to be only loosely correlated.



A particularly important result is when the dot product of vand w is zero. In
that case v and w are said to be orthogonal, which is a fancy word for “perpendicular
to each other.” Orthogonal vectors allow the scalars in one vector to be measured
without concern for the value on the other vector: a change in x carries no
implications for the value of y. Orthogonal vectors form the basis of a vector space, a
concept worth drawing out.

Also of particular interest is the dot product of a vector with itself, say

(V||V). This is formed by multiplying each component of v by itself, then adding the

results to get the “sum of squares”

[V1 V2 ... VN] Vi
V2
(LA.7) <V||V> = = vi2+v2 +..+ vt = YV v?

VN

The last vector operation we will look at is the tensor product, often called the

outer product. The tensor product of two vectors is |V) ®(w|, that is, a column

vector times a row vector. If the column vector is Nx1 and the row vector is 1xM,

the tensor product is an NxM matrix. Thus

V1 [W1 w2 ... Wm] Viwi Viwy.... ViwmMm

V2 VoW1 V2W2.... V2WM
(LA8)  |V)y®(w| = =

VN VNW1 VNW2  VNWM

This is done by multiplying each element in the column vector |V> by the row vector

<W ; there are MN elements in this NxM matrix.




Matrices

A matrix is a collection of vectors, each of the same dimension. The size of a
matrix is described as number of rows times number of columns. For example, a
matrix with M column vectors, each with N rows, is an N x M matrix; it contains NM

entries (scalars, functions, whatever).

For example, suppose we have three separate Nx1 column vectors denoted as

i),

v2>, and |V3> . The matrix V formed from those Kets is

Vil V12 Vi3
V21 V22 V23

(LA.9) V=[|Vl>, V3>] = V31 V32 V33

VN1 VN2 VN3

This matrix is an NxN (“square”) matrix formed by putting the second ket next to
the first ket, the third ket next to the second ket, and so on. Suppose we form a

matrix W in exactly the same way, as below

wi1 Wiz W13
W21 W22 W23

(LA.10) W=[||W1>, W3>] = W31 W32 W33

W, ),

WN1 WN2 WN3

Now we have two NxN matrices Vand W. We can convert either of these to
its transpose, by simply rotating the first column into the first row, the second
column into the second row, and so on. For the transpose of W, denoted W¥*, the

elements wijin W become wji in W¥*, i.e.,

wi1 W21 w31 . WN1

(LA.ll) W* = W12 W22 W32 e WN2
w13 W23 w33 ... WN3

WiIN W2N W3N ... WNN



Two matrices can be multiplied if they are conformable, that is, if the number

of rows (or columns) of one is equal to the number of columns (or rows) of the

other. Vand W* are conformable because V is NxN and W*is NxN. IfV

postmultiplies W*, the result is the NxN matrix below. (Note that W* can not

postmultiply V because the columns of W* and the number of rows of V are

different.)
(LA.12)

<W1|V1> < W1|V2>

W*v

<W2|V1 > <W2|V2 >

<W3|V1> < W3|V 2>

<Wn|V1i> <wy|v 2>

2 wiivy

= 211\1 W2iVyi

N
1 W3iVqg

L 211\1 Wi V1

211\1 W1iV3;

211\1 W2 Uy

211\1 W3 Uy

211\’ WyiVz;

<W1|VN>
<wz|vn>
<W3|VN>

WN|VN>

211\’ W1iUn;

211\] W2 Uni

211\] WpiUni

211\/ WyiUn;

Thus, matrix multiplication is simply repeated dot products of the row and column

vectors.

We have seen that the tensor product of a scalar and a vector is simply a

vector with each element in the original vector multiplied by the scalar. We now

move on to the tensor product of two matrices (the tensor product of two vectors is

formed the same way).

The tensor product of two matrices is formed by multiplying each element of

the first matrix by the entire second matrix. The size of matrices (or vectors) in

tensor products is irrelevant—there is no conformability requirement for tensor

products. Suppose that A is an M x N matrix and B is an K x L matrix. The tensor

product of A and B is



bllA b12A b13A en blLA
b21A bZZA b23A en bZLA
(LA.13) B®A = bsiA bxA  biA ... baA

bxiA bx2A bx3A ... bxiA

This matrix is a KM x LN matrix. . To show it’s expansion, assume that A and B are

both 2x2 matrices. Then a 4x4 matrix is created:

bi1ai1 biiaiz bizai1 bizaiz
(LA.14) B®A = [ b11A bi2A } = biiaiz biiazz bziaiz bziaz

b21A  b22A bz1a11 bzia1z bziai1 bzzaiz

bz1a12 bzia22 bzzaiz bzzaz:

Just as matrices can be multiplied by matrices, so matrices can be multiplied
by vectors (which are, in fact, just matrices with one column or one row). Suppose

we want to multiply the 1xN row vector (w|= [w1 wa ... wn] by the  NxN vmatrix W,

as below
[W1 w3 ... WN] Z11  Z21 Z31 e ZN1
(LA.lS) <W| Z = Z12  Z22  Z32 . ZN2
Z13 Z23 Z33 . Z3N
L ZIN Z2N Z3N ... ZNN B
_ N N N
= [ 21 V1VZ1; X1 ViiVZy - N1 V1iVZp; ]

This is the dot product of w with each column vector in Z, that is,

Determinants, Adjoints, and Inverses

We denote the determinant of matrix A by |A|, the transpose of the matrix by
AT, the adjoint of the matrix by A+, and the inverse of the matrix by A-l. These are

very related properties in linear algebra.



Determinant of a Matrix

Consider the following 3x3 matrix:

Au de A
(LA.T6) A= Az d» Az
As: A Az

The determinant of A is a scalar formed by a composite of multiplication and
addition of the elements in A. The formal approach is called expansion by cofactors.
The cofactor of a matrix element aj;, denoted +Cj, is the determinant of the matrix
remaining after both the row and the column of aj; have been eliminated from the
matrix; the cofactor is positive if i +j is even and negative if it is odd.

For example, the cofactor of a,, is:

(LA.17) A

a;; Qg3

as the
az; Qasj

The row and column with a,, are struck out, leaving Cz; =

cofactor of a,,. The cofactor (like any determinant) is evaluated as the product of
numbers on the NW-SE direction less the product of numbers on the SW to NE
direction, i.e., C22 = ai11 ass - as1dis.

Expansion by cofactors requires selecting any row (or column) and
computing the cofactors for each of those elements (taking careful note of the
cofactor’s sign). Then each element in the selected row or column is multiplied by
its cofactor and the results are summed. Thus, if we choose the first row of A the

determinant is |[A| = @a11C11 + @12(-C12)+ a@13C13. The cofactors for the row are



(LA.18)

Az, Qy3
+C11 = = dz2 as3 - A32033
az,; Qaszj
a;; a3
-C12 = - = -(az1 az3 - az1azs)
az; Qasz
a;; ap
Ciz = = (az1 as; - az1azz)
as, Qs

And the determinant of A is

(LA.19)

|A| = a11C11 + @12C12 + @13C13

= ai1(azz azz - az2azz) - aiz( az1 azz - az1ass) + ai3(az1 asz - az1azz)

Note that each element in a matrix has a cofactor, and that expansion by

cofactors can be done using single any row or column.

A less formal but quicker approach is shown below. The operation goes as

follows

* Multiply each triplet of elements on the diagonals counterclockwise starting with
the main diagonal, then moving to the next lower diagonal, and so on, then add each
triplet multiple together.

= +ajiiaizaiszt+aziaszzaiztasidzsaiz




* Multiply each triplet of elements clockwise starting with the minor diagonal (SW-NE)I,
then moving to the next diagonal and so on. Subtract each triplet.

= -d31d22d13-d32d23d11-d33d12d21

* Add the two results together to calculate the determinant

|A| = (+a11a1za13+aziazzaiz+aziazaiz) - (az1azzaiz + as2az3ai + azzaizazi)

A numerical example is the 3x3 matrix

3 1 5
IA|= 2 4 6 = 120+70+6-20-39-20 = 117
1 7 10

Matrix determinants are extremely important with many applications in

physics. We will soon see some uses.

Matrix Transpose
The transpose of a matrix, A", is easily derived by pivoting columns to
become rows: the first column becomes the first row, the second column becomes

the second row, and so on. Thus element aj; becomes element a;; .

Adu A Qs Au da Aa
(LA.20) If A= dn Az Az then A'= A Az Az
A Az dwm iz Az dm

10



Matrix Adjoint
The adjoint of a matrix, denoted A+, is the transposed matrix of cofactors.

First, form the matrix of cofactors C, then transpose it to get

F 1T

C11 —Clz C13
(LA.21) A= C' = _CZl sz —C23
_C31 —C32 C33

Cll _C 21 _C31
- _C12 C22 _CSZ
C13 _C23 C33

A matrix is said to be self-adjoint if A = A*. We will see later that Hermitian matrices
are an important example of self-adjoint matrices in a complex vector (Hilbert)

space.

Matrix Inverse

We’ve just completed all the pieces to the grand finale: inverting a matrix. A
matrix inverse, denoted A1, is a matrix for which AA-1=1, where I is the identity
matrix or unit matrix (a diagonal matrix with 1’s on the principal diagonal and zeros

elsewhere. Thus

(LA.22) I =

S O
o = O
_ O O

[s a 3x3 identity matrix. Note that all identity matrices are square.

11



Computing an inverse matrix is straightforward now that we have all the
pieces. The inverse matrix is the adjoint of the matrix divided by the determinant of
the matrix, or

(LA.23) A1 = A+/|A|

Note that the matrix can not be inverted if |A| = 0. In this case some columns
or rows of A are linearly dependent, meaning that there are redundant columns or

rows. This brings us to the topic of the rank of a matrix.

Matrix Rank

We have seen that each matrix has a dimension—the number of rows times
the number of columns, say NxM. The dimension is easily discovered simply by
inspecting the matrix.

A more subtle characteristic is the matrix rank. The rank measures how
much independent information the matrix contains. Consider our square NxN
matrix. If all the rows and vectors are linearly independent the matrix has full rank,
that is, rank N. In a matrix with full rank, there are N2 pieces of information.!

But now suppose that one row is linearly related to another row. For
example, each element in row 1, ayj, is related to the corresponding element in the
3rd row by the equation ajj = a + a3;. This means that one of those two rows carries
exactly the same information (up to a linear transformation) as the other row—
there is a redundant (informationless) row. In this case the matrix is not of full
rank: its rank is N-1. There can be more than one linearly dependent row or column
in a matrix: if k rows or columns are linearly dependent, the matrix rank is N - k.

When a matrix is not of full rank it means that some of its information is
useless because it replicates other information. This means that we overstate the
amount of datain matrix with less that full rank. To correct this, one needs to
investigate the sources of linear dependency and eliminate the excess rows or

columns, reducing the matrix dimensions to a size that has full information.

L If the matrix is NxM (not square), its maximum rank is the lesser of M or N.

12



Fortunately there are signs to warn the data user. If the determinant of an
NxN matrix is zero, it has rank < N; that is a slam dunk test. But how does one know
how much redundancy there is in the data? One way is to compute the eigenvalues
of the matrix: the rank of a matrix is equal to the number of nonzero eigenvalues. So
if a square NxN mtrix has N-k nonzero eigenvalues, you know that there are k
redundant rows or columns. Note that the number of redundant rows is always equal
to the number of redundant columns, so we can use either columns or rows to
examine linear dependence within a matrix.

Which brings us to eigenvalues...

Eigenvalues and Eigenvectors

Our last linear algebra topic is eigenvectors and eigenvalues. These have
many applications in the physical sciences.

Eigenvalues emerge when we want to take a general matrix A and
diagonalize it so that all information is in the principle diagonal, and zeros are in the
off-diagonal positions. The numbers on the principle diagonal are the eigenvalues of
the matrix and the columns of the matrix are the eigenvectors

Suppose we have our 3x3 matrix A and we want to diagonalize it. This

means solving the linear equations

(LA.24) A|x) = M|X)

where A is an NxN matrix, X> is an Nx1 column vector, Iis the NxN identity matrix

and A is a scalar. The vector |X> is called an eigenvector of the matrix and the scalar

A is an eigenvalue of the matrix. The task is to take a known matrix A and to find its
eigenvalue(s) and eigenvector(s).
What is this equation system doing? If A is a 2x2 matrix, LA.24 It takes its

two vectors and extends the length of each by the same proportion without

13



changing the directions. To see this, suppose that A is a 2x2 matrix and |X> isa2x

vector, so the equation system is

a1 Qg A 0
(LA.25) [a21 azz] 1X) _[0 A] |X)
that is, a11X1 + anXz = AX1

az1X1 + az2Xpz = 7\.X2

The result is shown below. The original vectors (black) are each extended in length
by a factor of 2, marked in red (they could also be reversed in direction, pointing SW

and SE).

X2

Aait, A
(Aaz1, hazz2) (Aai1, haiz)

(a11, a12)
(a11,a12) ,

X1

Let’s continue with our two equation system. The equations can also be

written (using |0) as a column vector of zeros)
(LA.26) (A-AD)|x) = |0)

that is, (311 - )\)X1 + apx: =0
azix1 + (azz2-AM)x2 =

|
o

To solve for the eigenvector, invert (A - M) and solve |x) = (A - AI)1|0).
Ooops! That gives the trivial solution |x) = |0) —the eigenvector is all zeros—but

we know that the eigenvectors are generally not all zeros! This makes no sense

until you realize that it is telling you something important—that the system makes

14



sense only when matrix (A - AI) can not be inverted, that is, it does not have full

rank!

Recall that when a matrix does not have full rank it's determinant must be
zero. Thus
(LA.27) [(A-AD)] = 0 = (a11-A)(azz-A) -azaz1 = 0

= A - (ai+azz)h + (a11@22 - a1z az1) =0

This last equation is called the characteristic polynomial of A and it can be
solved for the eigenvalue. It turns out that there will be two roots to this quadratic
equation; each root is an eigenvalue of A. In general, if A is an NxN matrix not of full
rank there will be an N order characteristic polynomial equation in A with N roots
(eigenvalues): some of these eigenvalues will be zero (when rows are linearly
dependent), others may be duplicates, and still others will be unique roots; but
there will be N roots.

Consider the very simplest case: a12= az1 = 0. The matrix (A - Al) is then
diagonal and simple inspection reveals that the two eigenvalues must be A;= a;; and
Az = azz. In the more general case the characteristic polynomial is a quadratic

equation be solved using . The two eigenvalues are

(LA.28) A, Az =%{-(a11+az22) = V[(a11+a22)? - 4(anazz - a1z az1)}

Manual solution is extraordinarily tedious for the very general case of an NxN
matrix, but fortunately we have computers to do the scut work. But however large
the matrix, the method is essentially the same as shown for a 2x2 matrix.

There are many uses of eigenvalues. One is in determining the rank of the
matrix A. It turns out that the number of redundant rows or columns is equal to the
number of zero eigenvalues. So if you want to find the rank of an NxN matrix,
compute the N eigenvalues and count the number that are zero. If that number is k
the rank of Ais N - k.

An important use in quantum mechanics is in the interpretation of the

amplitudes in a superposition of quantum states: The eigenvalues of the

15



Schroedinger probability wave’s Hamiltonian matrix are the amplitudes of the
quantum system’s superposition.
What about the eigenvectors? These can also be found, but we forego that

pleasure.

Basis Vectors and Vector Spaces: R-Space

Suppose we have two 2x1 vectors [1 0] and [0 1] (written as rows to
conserve space). These two vectors have a zero dot product and are, therefore,
orthogonal. These are the basis vectors for a two-dimensional Cartesian? two-
dimensional vector space, denoted an R?2 vector space. The axes of this space are at
90° angles with each other—movement along one axis does not necessarily change
position on the other axis. If a third dimension exists, there are three orthogonal
basis vectors [1 0 0], [0 1 0], and [0 0 1] required to form the three-dimensional R3
vector space.

An RZ? vector space is shown below. This is the familiar graph that you
encountered even before high school. It is formed by the two basis vectors [1 0]

and [0 1] where we call the axes x and y, denoting each point in the space as (x, y).

ty

v

Two-Dimensional Vector Space

2 Cartesian vector spaces are named after Rene Descartes, the 17t century French philosopher and
mathematician who invented analytic geometry (the marriage of algebra and Euclidean geometry).
Descartes was the first to use vector spaces (his were derived to apply to spaces consistent with the
axioms of Euclidean geometry).

16



Suppose we stick to two dimensions and focus on the point (x1, y1) on the
graph below. The red arrow is the vector describing that point (yes, vectors have a
visual representation). Let’s look at its parts.

The red arrow is the equation y = ax—a straight line with slope a passing
through the center (origin)—that terminates at (x1, y1). It can be represented either
as an arrow, as shown above, or as a point like (x1, y1). That vector has two
characteristics: magnitude and direction. Its magnitude, denoted ||, also called its
norm, is the vector’s length. By the Pythagorean Theorem, |I| = V(x12 + y12). Its

direction is the angle that it makes with the horizontal axis, 0 = arctan(y1/x1).

ty

-X X1 +X

v
A Vector in R?

This vector could be derived for any number of dimensions, though we can’t
draw a figure in more than three dimensions. In three dimensions it would start at
the origin and go straight to the point (x1, y1, z1). It's magnitude would be
|| = V(x12 + y12 + z12) and its direction would be described by two angles, one

between the x and z axes, the other between the y and z axes.

Combining Vector Spaces

Suppose we have two separate three-dimensional vector spaces, R31 and

R3;. Each has three basis vectors, arranged below as 3x3 matrices. Each basis

17



matrix has a 1 as the element on the principle diagonal and zeros elsewhere. Such a

matrix is called a unit matrix.

R34 R3,

100 1 0 0
(LA.29) 010 01 0

00 1 0 0 1

Because these are separate vector spaces, points in one do not translate to

points in the other: a space traveller in R31 can report his galactic position to
anyone in his space, but an observer in R3; can make no sense of it. Suppose we
want to combine them into a single space, R33 so that an observer in one space can
make his location known to observers in the other space. Is there a way of
combining the two vector spaces?

Well, yes there is, and in this case it is straightforward. It is done by forming
the direct sum of R31and R3;. The direct sum of two matrices, denoted by the
symbol @ and written R31 + R33, creates a block diagonal matrix with R34 in the
northwest quadrant, R3; in the southeast quadrant, and zeros in the northeast and

southwest quadrants, as below (the dashed lines delineate the four blocks in the

matrix).
R3;
 100!000 |
0 1 oio 00
(LA30) IR31 @ R32 = _9__0__!'_:_(2_9__0_-
00O0'L 0O
0 00j010
. o0 o00:00 1

Like its component matrices, R33 is a unit matrix. Its columns are the basis

vectors for, respectively, the variables x, y, z, u, v, and w.
Using this method vector spaces of any size can be combined into a single

vector space. This operation is rarely done in Cartesian vector spaces in the

18



physical sciences the combination of Hilbert vector spaces is a standard procedure.
We have gone through this process to set a foundation for our discussion of Hilbert

Spaces.

Hilbert Spaces, Observables, and Operators

When we reviewed linear algebra we used Cartesian vector space in which
each point is measured as a real number, basis vectors are orthogonal (at right
angles), and there are a finite number of dimensions. This is sufficient to
understand the basics of quantum mechanics, but not sufficient to do quantum
mechanics. Quantum particles live in a very different world, a world called Hilbert

Space, denoted as HN and named after David Hilbert, an early 20t century

mathematician.

Hilbert Spaces

[t turns out that a Cartesian vector space satisfies the requirements of a
Hilbert Space: All Cartesian Spaces are Hilbert Spaces, but not all Hilbert Spaces are
Cartesian Spaces. Some major points of similarity or dissimilarity between
Cartesian and Hilbert spaces are

* Basis Vectors: in both Cartesian and Hilbert spaces the basis vectors are
orthogonal (at 90° to each other).

* Dimensionality: Cartesian spaces have a finite number of dimensions while
Hilbert Spaces typically have a (countably) infinite number of dimensions,
though finite dimensions are sometimes used for expository purposes. Cartesian
spaces are usually analyzed with discrete differences or differential /integral
calculus. But because Hilbert spaces have an infinite number of dimensions they
are analyzed using infinitesimal methods like integral and differential calculus
and partial differential equations.

* Content: The content of Cartesian space is the set of real numbers; the content of
Hilbert space can be real numbers, complex numbers, or even functions. This

makes Hilbert spaces suitable for analyzing a broad range physical phenomena,

19



particularly those containing cycles. For example, the harmonics introduced by
standing waves of violin string vibrations, and the evolution of Schroedinger
probability waves, are examined using spaces of complex numbers, i.e. Hilbert
spaces.

* Inner Products: Both Cartesian and Hilbert spaces are “inner product spaces,”
meaning that the inner product (dot product) between two points measures the
distance between two points. Thus, the distance metric for (x1, y1) and (x2, y2) is

V[(xz - x1)2 + (y2- x1)? ] in both Cartesian and Hilbert spaces.

* Completeness: Both Cartesian and Hilbert spaces are “complete” in the
mathematical sense that sequences like sums converge “in the limit.” This
means that sums of infinite series and integration over infinite values are both
meaningful operations.

* Combining Spaces: Cartesian spaces are additive spaces, combined using the
direct sum of the basis matrices. Thus, two 3-dimensional Cartesian spaces,
each with a 3x3 identity matrix as the basis matrix, are combined to create one
6-dimensional Cartesian space with a 6x6 identity matrix as the basis matrix
(see LA.30). Hilbert spaces are product spaces combines as tensor products, so

two 3x3 Hilbert spaces, H3; and H3», each with a 3x3 basis matrix, becomes a

9x9 basis matrix, as below:

20



31 ®H3, = 3®I3= Ig=

ol eolololNolNolNoRNoll
el eolNeoloelNeolNolNoll i)
OO OO0 oOomr oo
OO O0OO0OOoOr OO0 O0o
OO O0OOPr oOoOoOoOoOOo
OO OPr OO O0OOoOOo
O OPFrPr OO0OO0OO0OOoOOo
OFrLr OO O0OO0OO0OO0OOo
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Note that both combinations of Cartesian spaces and combinations of Hilbert
spaces result in identity matrices, but the resulting vector space dimensions are
different: a combination of an MxM Cartesian space with an NxN Cartesian Space is
an (M+N)x(M+N) Cartesian space, but a combination of an MxM Hilbert space with

an NxN Hilbert Space is an MNxMN Hilbert Space.

“Observables”

An observable in quantum mechanics, also called an observable operator, is a
function that acts on a quantum matrix to give a measurement of physical
(observable) characteristics of the system, like energy, momentum, position,
angular momentum, and so on.

Observables are Hermitian Matrices, with several properties:

* They are self-adjoint, that is A = A*

They have real eigenvalues, interpreted as the amplitudes of each state

For each eigenvalue there is at least one eigenvector

The eigenvectors form an orthonormal basis for an eigensystem—a Hilbert
space incorporating the eigenvalues.

Perhaps the most prominent observables are those giving rise to the system’s
Hamiltonian, which measures the energy of the quantum system. The Hamiltonian

for a single particle in one dimension (x) has the following three observables:
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The Hamiltonian of a Quantum Particle

2
p
H=— +V

_ . 0
p—lhax
_ . 0
X—lhap

H is the Hamiltonian defining total energy, V is potential
energy, m is mass, x is position, and p is momentum. A is the
reduced Planck Constant (A = h/2m).

.. 0 o 5 0
The momentum observable p = -lha and the position operator x = -Iflg

0 0
contain the symbols P and o These are the partial derivatives with respect to

position and momentum of the elements in matrix H. This is why observables are
also called observable operators—the do not stand alone; rather, they operate on a
vector or matrix. These three inter-related observables describe Schroedinger’s
Wave Equation for the special case of a single particle, one spatial dimension and
time-independence.

The Hamiltonian and the momentum and position observables describe the

2
energy of the particle: H is the total energy, V is the potential energy, and % is the

particles kinectic energy. Note that in the case of a particle traveling at the speed of
light, p? = (mc)? so the Hamiltonian is H = mc? + V where H is total energy, mc?is

Einstein’s kinectic energy (E = mc?) and V is the particle’s potential energy.

“Operators”

As noted repeatedly above, quantum superpositions can be manipulated by

linear matrices called operators. Operators are not associated with measurements;
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rather, they transform the quantum state superposition without measurement that
would create decoherence (wave collapse).

In quantum mechanics operators are unitary matrices: a unitary matrix (U) is
a matrix for which the product of the matrix and its adjoint is an identity matrix,
that is, UU* = L. The effect of a unitary operator is to rotate the quantum system’s
vectors in Hilbert space. Important examples are the three Pauli Matrices that

rotate spin along the z, X, and y axes. The Pauli matrices are both Hermitian and

Unitary, hence the square of each is an identity matrix (U? =I).

Pauli “Spin” Matrices

S O B VY I T

Other important unitary matrices are those that create quantum logic gates.
For example, the “Controlled-Not” matrix (C-Not), shown below for a three-qubit
system, reverses the second qubit if the first qubit is 1. The result is the mod 2

addition q1® q2 = qs, or

C-NOT
q: Q2 qs
0 0 = 0
0 1 =1
1 0 = 1
1 1 = 0

The C-NOT writes the modulo 2 sum of the q1 and q2 qubits to the g3 qubit.
Thus, g3 contains q1 @ q2 mod 2.

The C-NOT gate is implemented by the specific Hermitian unitary matrix

1 0 0 O

0O 1 0 O
Uc-nor =

0O 0 0 1

0 01 O
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and the entire operation is
q2 qs

i

Another important unitary matrix is the Hadamard transform, used to create

Ucnor (|0>®(1>) =

o © O
oORm OO

oo O K
oo RO

a Hadamard logic gate. This operates on a single qubit using the following

Hadamard matrix:

e vl! ]

The Hadamard transform on the superposition (|0 > + |1 >) is
Un(|0> + [1>) =\/1/2[1 _ﬂ (10> +[1>)

=V1(|0> +|1>) +V4(|0>- |1 >)

Yet another operator is the phase shift matrix Upn:

_1 0
Upn = [0 eid’]
used to shift the phase of complex numbers. A phase-shift transformation is
Upn(j0>+[1>) =|0> +e'®|1>

resulting in a complex number with the |1 > state vector phase-shifted relative to
_ [cos(8) _[ O ]
the |0 > state vector. If, for example, |0 > = [ 0 ] and |1 >= [sin(@) , we have the

familiar complex number cos(0) + e!?sin(0).
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Complex Numbers

At several points we’ve noted that quantum mechanics makes liberal use of
complex numbers: the amplitudes in quantum superpositions are often complex
numbers, and the squares of those complex numbers are the probabilities attached
to the associated quantum state; the Feynman clocks used to describe QED are
complex numbers; the probability waves that suffuse quantum amplitudes are
derived from complex numbers. We have been able to convey the spirit of quantum
mechanics without direct resort to complex numbers, but in this appendix we
outline their nature and their implications.

A complex number is a number that consists of a real part and an imaginary
part, say c = co + c1i, with co the real part and cii the imaginary part. The imaginary
part is the product of a real number, c1, and the imaginary numberi (i =vV-1). For
each complex number there is a conjugate complex c* = co - c1i.

+1i

N\

Vec*

(CN.l) +C1
Co
- real + real

-C1

Vec*

-i

Complex Number and its Complex Conjugate



The figure above shows a complex number and its conjugate as hands on a
clock. The complex number is the arrow (vector) sloping upward at angle 6; the
complex conjugate slopes downward at angle -0. By the Pythagorean Theorem we
know that the length of the clock hand is |c| = V( co? + c12); |c| is called the modulus
of the complex number. The modulus is the square root of the product of a complex
number and its conjugate, i.e., Vcc* =V(co? + ¢12) is the length of the arrow. Note
that all angles are in measured in radians, r, with r = 2x(6°/360°) being the
conversion between degrees and radians.

Thus, the clock above shows all there is to know about a single complex
number: the length of the hand, |c|, is the amplitude of the associated quantum
event in a superposition, and |c|? is the probability of that quantum state. The angle
of the hand, called the argument of the complex number, is the phase of the cycle: an
angle of 0° (r = 0 radians) is the start of a cycle, an angle of 90° (r = «t/2 radians) is %
of the way through a cycle, an angle of 180° (r =  radians) is % of the way through a
cycle, and an angle of 270° (r = 37/2 radians) is % of the way through a cycle, and an

angle of 360° (r = 0 radians) returns the cycle to its original starting point. H

As a cycle proceeds, the complex number hand sweeps counter-clockwise on
the clock, starting at the 3 o’clock position (6 = 0), while the complex conjugate’s
hand sweeps clockwise. Because all of the information in the one is shown in the
other, we can dispense with consideration of the complex conjugate and focus on
the complex number.

The complex number can be written in other forms, which are often easier to
manipulate. This is shown in the box below. The first alternative form—the
trigonometric form—converts the complex number to a sine function using simple
trigonometry of the clock figure above. The second form—the polar form—converts
the complex number to the polar coordinates |c| and 0. All three forms are

equivalent, so the one used is a matter of convenience.
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Alternative Forms of Complex Numbers
A complex number and its conjugate can be written as

Trigonometric Form

* co + c1i = |c|{cos (0) + isin(0)}
co - cii =|c|{cos (0) - isin(B)}

(CN.2)
Polar Form

* Co + c1i = |c|-exp{+i0}

Co - c1i =|c|-exp{-iB}

Note: |c| is the modulus (|c| = Vcc*), and exp{i6} is the Euler
constant (exp = 2.7128... ) raised to the power i6.

The phase of the complex number, 6, can be calculated as the arctangent of c1/co,
that is, the angle for which c1/cois the tangent. This requires an adjustment for the

quadrant that the clock hand is in. The adjustments are shown below.

Phase Angle of a Complex Number
0 = arctan(c1/co) if cc>0andc1 >0 (Quadrantl)
0=m/2 if co=0andc1>0
0 = arctan(ci/co) + /2 if cc<0andci>0 (QuadrantlIl)
0 = arctan(ci/co) - /2 if cc<O0andci1 <0 (QuadrantIII)
0 = arctan(ci/co) - /2 if cc>0andc1<0 (QuadrantIV)
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The arithmetic of complex numbers is fairly straightforward. Suppose we
have two complex numbers, co + c1i and do + d1i, with phases 6. and 04 respectively.

The modulus of the numbers is |c| and |d|. The following rules apply

Complex Number Arithmetic

Addition and Subtraction

* (co+ci) + (do+ dii) = (co+do) + (c1 +d1)i
= |c+d|{cos(Oc+a) + isin(BOc+a)}
(CN.3) = |c+d|exp(iBc+a)
* (co+ci) - (do+dii)=(co-do)+ (c1-d1)i
= |c-d|{cos(Bc-q) + isin(BOca)}
= |c-d|exp(iBc-q)

Multiplication and Division

* (co + c1i)(do + d1i) = (codo - c1d1) + (codi+ c1do)i
= |c||d|{cos(Oc+ B4) + isin(Oc + Oa4)}
= |c|[d]exp{i((Bc + Ba)}
* (co+ cii)/(do + dii) =[(codo + c1d1) + (cido- cod1)i]/|d|?
= (|c|/|d]|){cos(Oc- B4) + isin(cos(Oc- 04)}
= (Icl/1d[)exp{i((6c - Ba)}

Exponentiation

* (co+ci)"  =|c|*{cos(nb) + isin(ncos(6c)}

(Ie|™)exp{in(Bc)}

Note: |c+d| = (co + do)2 + (c1 + d1)2  Oc+q = arctan{(c1 + d1)/(co + do)}
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Phase Shifts and Imaginary Numbers

We have seen that a complex number can be written as |c|[cos (0) + isin(0)]
with real part cos (0) and imaginary part isin(0). The evaluation of the imaginary
part is plagued by mystery, so here we will try to demystify it a bit.

What role does i play in this function? Suppose we rewrite the function
describing the cycle as |c|[cos (0) + e'?sin(0)]sin(0)] with angle ¢ indicating a phase
shift and angle 0 (as before) indicating the position in the general cycle: 6 =0 is a
new cycle beginning, 6 = 90° is halfway through a cycle, and so on. It turns out that
when ¢ = 90 then e!? = i. Thus, the complex number |c|[cos (0) + isin(0)] describes
a cycle with a 90° phase shift. The phase shift alters the value attached to the sine
part of the number relative to the cosine part.

Let’s pursue this a bit further. Consider the complex number e?sin(0)
where ¢ is a phase angle. A unit circle (radius = 1) is shown below. The blue vector
represents the contribution of the sine portion when 6 = 0 and ¢ =0, that is, the cycle
is just beginning and there is no phase shift. Because e‘°= 1, sin(0) = 0, and
cos(0) =1, that point is (0, 1) its blue vector’s end pointis at (01, 0).

Now introduce a phase shift of ¢ = 7/4 radians (45°) while 6 remains at zero.
The phase shift rotates the vector counterclockwise by 45° to the position of the

green vector. The real part of the complex number is now a, which is less than 1.

(CN.4) - real s

+ real
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The phase shift has reduced the real value of the complex number even
though the position in the cycle (measured by 0) has not changed. We can proceed
in this fashion to determine the effect on the real value at other phase shifts: when
¢ = mt/2 radians (90°) the real part is zero; when ¢ = t radians (180°) the real part is
-1; when ¢ =3x/2 radians (270°), the real part disappears again; when ¢ = 2x
radians (360°) the real partis 1.

Thus, a phase shift will influence the amplitude of the real part of the
complex number at each stage in the sine function’s cycle. This is important because
only the real part of the complex number can be measured. So by affecting the real
part of the complex number at each 0 phase shifts affect the size of the sine
function’s influence on observed cyclical phenomena.

As noted above, the amount of phase shift has a specific relationship with the
imaginary number i. That relationship is shown in the table below. Thus, the effect
of phase shifts is to cause the real value to “skip” to another place in the cycle, just as

a scratch on an old phonograph record causes the needle to skip to another position.

Effect of Phase Shift on Cos (0) + e!?Sin(0)

Phase Shift
Angle (¢) Phase Shift
degrees radians el¢ Complex Number **
0° 0 1 cos (0) +sin(0)
45° n/4 elm/4) [cos (0) + sin(0)] + isin(6)
90° /2 el™/2) cos (0) + isin(0)
135° 3n/4 ei3m/4) [cos (8) -sin(0)] + isin(6)
180° n e'® cos (0) - sin(0)
225° Sn/4 e!5m/4) [cos (8) -sin(B)] + isin(6)
270° 3m/2 ei3m/2) cos (0) - isin(6)
315°  7mn/4 el7m/4) [cos (08) +sin(B)] - isin(6)
360° 2n el?” cos () + sin(0)

* e is Euler’s constant, e = 2.7183, and e™ = -1.
** The real part of the number is shown in bold font
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The figure below shows the value of the real part of the complex number

over a full cycle.

The Real Part of Cos(8) + ¢!?Sin(0)
At Different Phase Shifts

Cos(x) + Sin(x)
(0° Phase shift)

Cos(x} - Sin(x}
(180" Phase Shift)

2
0 10 20 30 40 50 60 70 80 90 100110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360
CYCLE STATE in TENS OF DEGREES

The horizontal axis is the stage of the cycle as measured by 0, and the vertical
axis is the amplitude of the function at each 0. Each of the three wavy lines is for
different phase shifts: the black line is the value of cos(8) + sin(0), which is the real
value of the function when the phase shift is ¢ = 0°, 45°, or 315°; the blue line is the
value of cos(8) which describes a phase shift of ¢ =90° or 270°; the red line is
cos(8) + sin(0), describing a phase shift of ¢ = 135°,180°, or 225°.

Feynman Clocks as Complex Numbers

Richard Feynman invented the Feynman Clock as a metaphor for the
complex mathematics underlying quantum mechanics. The clock hand has two
parts: its length, or modulus, measures the amplitude of a particle’s wave function;
its argument the position in the wave cycle. The motion of quantum particles can be

seen as a sequence of Feynman clocks.
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In Part 2 we discussed Feynman'’s example of His Sum Over Histories
approach to quantum electrodynamics. We summarize that section below, then
discuss its relationship to complex numbers.

The Sum Over Histories approach says that all possible outcomes in a
quantum superposition occur simultaneously until a measurement is made.
Feynman asks what this implies for the path taken by a photon of light. The
textbook answer is high school physics is that (a) light always takes a straight-line
path between point A and point B because that is the shortest and fastest route, or
(b) light always reflects at the angle of incidence, which is another way of saying the
same thing.

Feynman'’s theory of quantum electrodynamics rejects this view: a photon
takes every possible path between two points, even the strangest of paths is taken, as
when a flashlight’s rays go around the moon to shine on the object in front of you.
But each path has a different amplitude and, therefore, a different probability—the
around-the moon path can occur, but it is highly improbable; the shortest path can

occur and it is much more probable.
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To demonstrate this Feynman used the figure reproduced above to show that
light does not travel a path that gives the shortest time—a straight line; it takes an
infinite number of paths (All Histories), some of them very strange. But the strange
paths happen infrequently, and the most probable paths are those closest to least-time
paths. That figure shows thirteen possible paths (A - M) of photons of a specific
frequency (color) that travel from point S (a photon gun) to point P (a photon
detector). Many photons will not be detected at all—their paths simply pass by the
detector—but that’s OK because Feynman's goal is to measure the probability that a
photon that is detected takes a specific path. So he supposes that any detected
photon must take one of the thirteen paths.

Paths A and M are the longest (and strangest) paths, with photons reflecting
backwards! Path G is the shortest path. A clock hand is used to show the “time”
taken for each path. The clock does not directly measure time (though time can be
calculated using the number of wavelengths and the speed of light); it is calibrated
to show the number of wavelengths (or cycles) the photon goes through as it travels
from photon gun to photon detector—one wavelength is one full rotation of the
hand and a partial wavelength is a partial rotation of the hand.

The clock is really a complex number, written |/|e'®, where 0 is the angle in
radians and |I| is the length of the clock hand. Each photon wave begins with the
clock hand at 3 o’clock (6 = 0°). It rotates counter clockwise as the cycle proceeds,
returning to 3 o’clock after a full rotation of 360° or 60 “minutes.” The hand'’s final
direction is determined at the instant the photon on that path is detected. That
direction (0) is measured modulo 60: the direction at the end of the last cycle is the
remainder from the total number of “minutes” traveled divided by 60. For example,
if the hand is at 9 o’clock then the photon has 30 “minutes” or %2 wavelength in the
last cycle.

To put a fine point on it, suppose that the clock hand rotates for n + x cycles,

where x is a partial cycle. Then 60(n + x) “minutes” have passed while the photon
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goes from the emitter to the detector. The number of full cycles is 60n and the
remainder—the partial last cycle—is 60x minutes. If 1,830 “minutes,” have passed
30.5 cycles have completed (1830 mod 60 is 30.5) so %2 (or 30 “minutes”) of the last
cycle have been completed. The clock started at 3 o’clock so it must now point to 9
o’clock.? Using the same method we can see that one “minute” is equivalent to /30
radians. Fifteen minutes is %n so a counterclockwise rotation of the hand by 15
minutes sets the clock at e™/2. This is % of a rotation, or 12 o’clock.

There is a clock for each possible path and the amplitude of each path, when
squared, gives the probability that the photon will take that particular path. The
probability that a photon will hit the detector is obtained by adding the clock hands
(vectors) together, hence the name “sum of all histories.” This is done by laying the
hands end to end, each pointing in its final direction: starting with A, attaching the
tail of B to the head (arrow of A, attaching the tail of C to the head of B, and so on.

The result is the worm-like pattern of arrows at the bottom of Feynman'’s
diagram. Note that at the extreme paths (A-C and K-M) the vectors tend to point in
different directions. This means that they are offsetting—there is “destructive
interference”—and it is clear that the net amplitude of paths A-C (and K-M) is very
small. But the vectors for the middle paths E-I point in the same general direction,
showing “constructive interference.” The overall amplitude for a photon reaching
the detector is the line obtained by connecting the start of path A’s clock hand to the
end of path M’s hand. The square of that overall amplitude is the probability that a
photon will be detected. Virtually all of the probability of detection arises from
paths E-I. Thus, light does not travel in a straight line that gives the shortest path—
it can take an infinite number of paths—but the path with the highest probability is
the shortest path.

Just for fun, let’s calculate the hand position for a path on which a photon is

detected after traveling %2 meter, or 500 million nanometers (nm). Light photons

3 Precisely the same result will occur if we use radians rather than minutes. There are 2x radians in
a cycle so 121x radians have passed. The remainder mod (2) is m--the hand is pointing at 180° from
its start, or at 9 o’clock.
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have a specific wavelength (A) and velocity (v), and the frequency of the wave is f =
v/A\. A photon path can be measured in wavelengths. Suppose the photons are red
light with wavelength 650 nm (nanometers), velocity at light speed (300 million
nm/nsec), and a frequency of 462x10%* terahertz (462 trillion cycles per second or
462,000 cycles per nsec). Then the photon travels for 769,230.77 wavelengths
(cycles). The remainder—77 percent of a cycle—amounts to 46 “minutes” on the
clock, so the hand points toward 6 o’clock when the photon is detected.

In his demonstration Feynman uses the same hand length |I| for all paths.
This assumes that the amplitude (hence the probability) of each path is the same
though directions will differ. This is a useful assumption for his purposes but only a
crude approximation. It turns out that the hand length (the size of the clock} also
changes as the photon moves along its path. The change in |/| is proportional to the
time taken to complete the path. The exact formula is that |/| increases in direct

proportion to the action of the particle’s motion, defined as: A|l|/|l| = mx?/2ht.
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Modular Arithmetic

Modular arithmetic focuses on the remainder left over after a division
operation. Consider the division 8/3. Our standard arithmetic would compute this
as 2.6667 or 22/3: a whole number (integer 2) plus the fraction 2/3. But modular
arithmetic would compute this as 2—the remainder after the whole number is
discarded.

In modular arithmetic the operation would be described as “8 = 2 mod(3),”
meaning that when 8 is divided by 3 the remainder is 2 (or that both 8 and 2 have
the same remainder when divided by 3). The relationship between 8 and 2 is said to
be “congruent (the symbol = means “is congruent to,” not “is equal to”).

Modular arithmetic is not an alien concept; it appears in everyday
experience. The most frequently encountered way is when you look at a clock. A
12-hour clock reports the hoursas 1, 2, 3, ..., 11, 0 (we call the end of the cycle “12”
but in fact it is zero because it starts the cycle all over again. Suppose we start our
daily cycle at zero on the stroke of midnight. The first 11 hours are 1, 2, ...., 11 and
then at “12” we start again at zero and go 1, 2, ....11 through the afternoon hours.
Thus, each hour reading is h = t mod(12), with h being the number of elapsed hours
in a 24-hour day and t being clock time (the elapsed time since the last reset). A 24-
hour clock (military time) is simply t measured from as h = tmod(24).

There are two equivalent ways to express the congruence on modular
arithmetic:

Ifa=b mod(n), then

* a - b is exactly divisible by n, leaving remainder zero.
* both a and b, when divided by n, have the same remainder

Of particular interest in binary arithmetic—hence in computer science—is
modulo 2 arithmetic. Binary numbers have a cycle of two—each bit has two values 0
and 1. Any higher number restarts the cycle for that bitat 0. For example, in the

text we saw that simple addition 1 + 1 is zero with a 1 carried over. Butin modulo 2
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addition, denoted by the symbol ®, 1 ® 1 = 0 because when added the decimal
result is 2 and that is exactly divisible by 2, leaving a remainder of zero; that is,
1+ 1 =0 mod(2). There is no carryover because each bit position stands on its own.
In mod(2) addition the rule is: if there are an even number of 1’s in a column, the sum
is 0; if there are an odd number of 1’s the sum is 1. So modulo-2 arithmetic is a natural
for binary numbers.

Thus, the simple addition in the text

10011110 (= 158)
+ 00010001 (= 17)
10101111 (= 175)

has the answer 1000111 in ® (mod 2 addition).
Note that just as @ and + are different operations with different results, so

mod 2 multiplication (®) and standard multiplication (x) also differ. Thus

111 (= 7) 111 (=7)
x 011 (= 3) ® 011 (=3)
111 111
111 111
10101 = 1001
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