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Classical Computing 
 

 We are all (too) familiar with classical computing: it is on our desktops, in our briefcases, 

and constantly within touch.  Classical computing is based on the binary number system in which 

the only information is zeros and ones. In this section we cover the bare basics of classical 

computing. 

 
Elements of Classical Computing 

 A bit is one piece of information (a zero or a one). The bit is implemented in a computer 

by voltage differences: a low voltage “ground state” is read as a zero, a high voltage “excited 

state” is a one.  The bits are embedded in semiconductors that let electrons flow only if the 

voltage is sufficient to bridge a gap; the semiconductors contain switches called transistors that 

can be set to 1 (switch open) or 0 (switch closed).  The basic unit of classical computing is a byte.  

A byte is a group of eight bits that represents a character, a number, a letter, a punctuation mark, 

or a symbol.  Since each bit can have two pieces of information (0 or 1), a byte can refer to as 

many as 28 = 256 characters.  

 Thus, voltage differences determine the string of zeros and ones in a byte, and these are 

referenced to a character map with 256 characters (the Extended ASCII map). For example, the 

byte 1•27 + 0•26 + 0•25 + 1•24 + 0•23 + 1•22  + 0•21 + 1•20 = 150 (decimal) refers to character 

number 150 (•) in the Extended ASCII map. The maximum number in a byte, 11111111,  

28 = 256, refers to the character ÿ in the Extended ASCII map.1  In earlier days, the ASCII map 

consisted of only 128 characters; a table of that earlier ASCII character map is shown below.  

The 128 characters of the original ASCII character map are hardwired to the keys on your 

computer keyboard; the additional 128 characters in the Extended ASCII map are implemented 

through software. 

 The classical bit was a concept developed in the late 1940s by Claude Shannon, a 

researcher at AT&T’s Bell Labs and the founder of information theory.  Shannon was interested 

in the question, “how much information is contained in data?” Shannon’s insight was that 

information is surprise: if you can accurately predict what the next bit will be, it is not 

information.  Suppose you have 100 bits of data and you have processed 25 of those bits. If the 

                                                
1 Zero is a character in ASCII so the 256 characters in Extended ASCII are 0 through 255. 
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next 75 bits follow a fixed pattern so that they can be accurately predicted from the first 25 bits, 

they contain no surprises and, therefore, no information.  But if each of the 100 bits is perfectly 

random, each bit contains information.  So we have a counterintuitive result: information is 

randomness; information is disorder, not order. 

 Shannon’s notion is akin to the second law of thermodynamic: the natural progression of 

all physical systems is toward increasing entropy, that is, increasing disorder.  For example, the 

universe began in a very highly ordered state (zero entropy) at the Big Bang, when mass and 

energy were all compressed into an infinitesimally small space.  But over the ensuing 15 billion 

years the distribution of mass and energy has diffused and become less ordered.  Matter became 

clumped into stars, planets, and other objects so there was still order in the universe, but the 

amount of order declined.  The ultimate destiny of the universe is complete randomness of 

matter: no galaxies, no planets.   

 Shannon Entropy, Shannon’s measure of the information content of a string of bits, is the 

average entropy of the string.  Shannon Entropy is E = − 𝑝(𝑥!)𝑙𝑜𝑔!(1− 𝑝!(𝑥!)!
! ) where 𝑥! is 

the 𝑖!! possible value of the (yet to be defined) random variable 𝑥, and 𝑝(𝑥!)  is the probability 

density function defining the probability that 𝑥! will take a specific value.  In information theory 

𝑥!   has two possible values : zero and one, which can stand for on and off, up and down, right and 

left, etc.  For example, suppose that each new bit has probability 𝑝(𝑥) = ½ of containing 

information and there are N = 100 bits of data.  Then E = 50, that is, ½ of the bits have 

information.  If, on the other hand, you are at a cocktail party talking with a repetitive drunk with 

a 0.1 probability of information content in each word, Shannon Entropy is 1.52 for 100 words: 

not much surprise there! Thus, the greater is Shannon Entropy the more information is in the 

next bit of data.2 

 In classical computing there are three basic places to store bits of data.  One storage site 

is a chip that permanently stores a fixed set of data in Read-Only Memory (ROM); this allows 

routine operations to be performed without user input.  An example is the BIOS chip that 

controls the computer’s startup procedures so that the computer “boots” properly—turn the 

power on and the BIOS wakes up and goes through the code necessary to make the computer 

                                                
2 Information theory has advanced considerably over time, and new definitions of entropy have evolved (among 
them, Von Neumann Entropy), but the basic premise is the same—entropy is an inverse measure of order; the higher 
the entropy number, the lower is the amount of order in a system.  
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usable.  ROM data cannot be changed by the user and, being permanently embedded in 

transistors, is “nonvolatile,” that is, it remains after power has been turned off.   

 Another storage site is Random Access Memory (RAM) which holds the data from 

software designed to do specific operations.  Examples are the Operating System information in, 

say, Windows 8 on a PC or OS X on an Apple computer.  The OS is automatically loaded into 

RAM at the end of the boot procedure; it controls the computer’s interactions both internally (as 

with the keyboard, mouse, or hard drive) and externally (as with the network, printers, and so on).  

RAM is “volatile,” meaning that the information content disappears when the computer is shut 

down.   
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 A third part of the firmware in a computer is the Central Processing Unit (CPU).  The 

CPU consists of transistors designed to undertake specific activities like interactions with 

peripheral devices (keyboard, mouse, printer, network) and mathematical operations. The CPU is 

ROM but it interacts with data in RAM.  The ROM chips controls the operations on RAM data, 

things like mathematical operations, and outputs the results to RAM. Thus, the ROM portions of 

the CPU are not volatile but the portions that get data input and assign data output are volatile. 

 Finally, punchcards, hard disk drives, flash drives and so on provide permanent data 

storage. It is there that classical computing has a major advantage that we will discuss later: 

copiability:  classical bits and bytes can be copied for safekeeping or for distribution with little 

danger of corruption.   

 We all know that there have been enormous changes in computing technology.  When I 

programmed and operated an IBM 1401 in the early 1960s it had only 16 kilobytes (KB) or 128 

kilobits (Kb) of RAM—just enough to hold the ASCII character code at that time.  Data storage 

was on punch cards (called Hollerith cards) that were heavy, easily put out of sequence (by, say, 

dropping the card box), and easily damaged.  There was no ROM so booting and operating 

system installation was done by punch cards.  The tiny RAM put a premium on programming 

efficiency, and even for simple operations the computer was quite slow, doing mathematical 

operations in hundreds of flops (floating-point operations3 per second) while the speed of 

modern computing is measured in Teraflops—trillions of cycles per second.  Today a computer 

with 32 gigabytes (32 billion bytes) of RAM and hard drives in the terabytes can be put in a 

briefcase.   

 These advances are based on the 1947 development of the transistor at Bell Labs.  

Transistor density, measured by the number of transistors on a semiconductor chip, has 

conformed to Moore’s Law stating that the number of computing components (transistors) on an 

integrated chip doubles every 1½ years.  First proposed as a casual prediction in 1965, Moore’s 

law has been remarkably accurate.  It says that the 16KB “chips” of 1965 would now, 48 years 

later, hold 232 KB, times the bits of an IBM 1401, or almost 7 billion bytes (7 gigabytes, or GB). 

The laptop this is written on has 8Gb of RAM. 

 But Moore’s Law is scheduled to fail for a number of reasons.  Heat is a chip killer and 

the heat generated by integrated circuits with such dense packing of memory chips is extremely 

                                                
3 A floating-point operation is an arithmetic operation which has a remainder, like 10/3 = 3.333333. 



 5 

difficult to dissipate.  Also, the speed of processing is running up against physical limits.  

Nothing travels faster than light, and electrons used in modern computers are coming ever closer 

to that limit.  Advances like superconductivity can forestall the limits of classical computing by 

eliminating the electrical resistance that causes heat, but superconductivity has immense energy 

requirements.  For example, superconductive materials like rubidium must be cooled to almost 

zero degrees Kelvin—absolute zero—to become superconductive. 

 Among the efforts to overcome those limitations are parallel processing, biological 

computing, and quantum computing.  Parallel processing uses multiple computers 

simultaneously to process mathematical calculations.  The coordination of many computers is 

complex, and each is still subject to the physical limits just discussed. Biological computing uses 

chemical interactions to represent bits of data. Quantum computing uses the quantum states of 

particles like electrons to represent data.  

 

Binary Arithmetic 

 Arithmetic operations in computers occur in registers that record and update the 

operations.  The smallest register—one byte or eight bits—can hold binary numbers up to 256 

(decimal); the two byte (16-bit) computer of the 1960s could hold a number up to 65,535; 

today’s four byte (32-bit) desktop computer can handle a number in the tens of billions; and 

modern high-end desktop 64-bit computers with eight-byte registers can handle numbers in the 

quintillions. As chip sizes have declined, register sizes have increased dramatically, and as 

register size has grown the precision of calculations has increased exponentially.  The dramatic 

increase in precision has made scientific computing extremely accurate. 

 How is binary arithmetic done in a computer?  Suppose we want to add the eight-bit 

binary numbers a and b, that is, perform the operation a + b.  If a = 10011110 and b = 00010001 

this requires bitwise addition: add the two bits in the rightmost column and if the result is odd (a 

1) record the result (sum) as a 1 for that column; if the result is even (a 0 or two 1’s) record a 

zero in that column and carry a 1 to the next left position. Repeat until all eight bits have been 

added.   
                                                                           Carry         1 

                                              R1:    10011110   (= 158 dec) 
                                              R2:+  00010001   (=   17 dec) 
                                                        10101111   (= 175 dec) 
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 This is shown in the above operation, where a is in the first row (Register 1) and b is in 

Register 2.  The two red digits are those affected by the carry operation. Note the fifth position: 

in binary addition 1 + 1 = 0 and a 1 is carried to the next column.  This is, or course, exactly like 

the decimal addition with which we are all familiar, shown below,  

   
                                                                                                     Carry           1 
                                                                              158 
                                                                          +    17 
                                                                           = 175 
 
 Multiplication in binary numbers is also performed in the standard fashion, starting with 

the multiplier’s rightmost bit, then shifting one bit to the left and again doing bitwise 

multiplication, and so on.  

 
 
                                                                 10011110   (= 158 dec) 
                                                             ×  00010001   (=   17 dec) 
                                                                 10011110    
                                                           +  000000000 
                                                          + 0000000000        
                                                        + 00000000000 
                                                      + 100111100000 
                                                    + 0000000000000 
                                                  + 00000000000000 
                                                + 000000000000000 
                                                = 000101001111110  (= 2,686 dec) 
 
 So nothing changes when we go from decimal to binary arithmetic except the base of the 

number system.4   

 These operations are done in either software—with a program dictating the bitwise 

operations, or in hardware (chips) with the operations permanently embedded in the chips.  As 

time has passed, the need for speed has given the nod to firmware: embedding the procedures in 

a chip is far faster than using software.  

 Not all arithmetic operations conform to our familiar rules.  Computer science makes 

frequent use of Modular Arithmetic (see Part 4: Technical Appendix).  We won’t venture into 

that field here except to say that a somewhat strange result is that in modular arithmetic using 
                                                
4 Subtraction and division (which is repeated subtraction) need not be demonstrated as they also follow the standard 
rules.   
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base 2 (called modulo 2 arithmetic) the sum of 1 + 1 is zero, as before, but there is no carry bit.  

Thus, in the above example of binary addition the answer using modulo 2 is 10101111, with no 

carry from the red bit.   

 

Logic Gates and Digital Circuits 

 Computers use digital circuits to process data in a more efficient manner than is shown 

above. The essence of these circuits is logic gates responsible for bitwise operations on register 

data.  Logic gates employ Boolean Algebra—an algebra designed to determine the “truth” of  

binary results with 0 = false and 1 = true.  The simplest example is the AND gate, shown below.  

 

                                                                  

                             R1:       a1                                                                                                 
            c1             R3 
      
                             R2:       b1 
 
                                                 The AND Gate 

  

 The AND gate is designed to determine if two inputs are both “true,” meaning that two 

switches are both “on” or that two bits are both 1.  It takes bitwise input from two registers: 

Register 1 holds the bits for number a, register 2 holds the bits for number b.  In the schematic 

above, a1 and b1 are the 0 or 1 bits from the first position in each register. The AND operation 

outputs a single bit c to Register 3. The value of that bit conforms to the rule “1 if a1 and b1 are 

both 1; 0 otherwise.”  This output is shown in the truth table. The operation is then repeated for 

all bits. 

 A NAND (Not-AND) gate simply reverses the outputs in the truth table: if both bits are 

“on,” the result is a zero; if none or only one of the bits is on, the result is 1.  

 

 

 

 

 

AND 

a1 b1  c1 
0    0    0 
0    1    0 
1    0    0 
1    1    1 

Truth Table 
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 Yet another gate is the OR gate: the output is 1 if either or b1 or both are 1; 0 otherwise. 

                                                     

                                       a1                                                                                             
 
      
                                       b1 
 
                                                   

                                                                The OR Gate 

 

 A related gate is the XOR gate. This gate determines whether a or b but not both is on.  It 

tests the logical “exclusive or” status.  The XOR gate is useful in certain operations involving 

modular arithmetic, a staple of computer science.  It implements the rule that 1 + 1 = 0. The 

XOR gate is 

                                                

                                       a1                                                                                             
 
      
                                       b1 
 
  

                                                                    The XOR Gate 

 Multiple logic gates can be defined for more complex operations.  A simple example is 

the HALF ADDER.  

                                                     

                                                                                                                                       
                                         a1 
      
                                            
                                   b1 
          a1 
  

          b1                           a1                                                                  

 
 
                                         b1 
                                            
                                                             An XOR + AND Gate 

OR 

a1 b1 c1 
0    0    0 
0    1    1 
1    0    1 
1    1    1 

XOR 

a1 b1 c1 
0    0    0 
0    1    1 
1    0    1 
1    1    0 

XOR 

a1 b1  c1 
0    0    0 
0    1    1 
1    0    1 
1    1    0 

AND 

   a1 b1 c2 
   0    0    0 
   0    1    0 
   1    0    0 
   1    1    1 
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Error Correction 
 
 We think of classical computers as reading and writing registers once—and flawlessly— 

then going on to the next step.  In fact, each time a register’s data are created, manipulated, or 

read, errors can creep in because of fluctuations in the voltage differences that mark a 1 from a 0: 

the same bit might be read as a 1 on one trial and a 0 on another.   

 In order to minimize the chances of incorrect reading that corrupts the calculation in 

progress and any further calculations based on it, the calculation is run repeatedly.  Each time the 

result is recorded and used to build up a probability distribution of the result.  When the 

probability that the output bit is  (say) a 1 is sufficiently high, the computer takes 1 as a fact and 

moves on. 

 This creates two problems.  First, calculation is slowed down by the need to repeat 

operations.  Second, the sampling procedure increases the heat that builds up in the computer 

because some, if not many, operations are literally thrown away.  As we know, heat is the 

ultimate limit on the number of transistors on a chip, hence on the validity of Moore’s Law. 

 The need for repetition is due to a significant limit of classical computing: operations are 

irreversible.  This means that you can’t reconstruct the input bit string from the output bit string.  

If you could, error analysis would be easier and quicker: you could take the output string, 

determine which input string it came from, and compare that to the actual input string.  If they 

are the same, no repetition is needed.  Processing speed would be increased and heat buildup  

reduced. 

 The irreversibility of classical computation comes from the use of digital circuits to 

implement logic gates.  We will see that quantum calculations are reversible, at least in principle, 

because they don’t require digital circuits.  Instead, quantum logic gates are in the form of 

matrices used to modify quantum states.  These matrices are invertible, allowing the computation 

to be reversed.  As a result, each operation is done once and immediately tested.  If no 

inconsistency with the inputs is found, it moves on.    



 10 

Quantum Computing 
 

 Quantum computing has many of the same characteristics as classical computing.  The 

basic unit of information is still zeros and ones, but these are now in the quantum states of 

particles called qubits.5  A qubit might be an electron, a photon, or any other quantum particle; 

the characteristic of the qubit that defines the 0 or 1 status might be the direction of polarization 

of a photon (vertical, horizontal, circular) or the quantum spin direction of an electron (up, down, 

right or left).  We will generally use z-axis spin: the two basis states are | 1 > if an electron’s z-

axis spin is up (i.e., | ↑ > ) and | 0 > if its z-spin is down (i.e., | ↓ >).   

 Qubits store and manipulate information. Recall that the quantum state of any system is a 

superposition of its basis states, that is, it is |ψ > = a| 0 > + b| 1 > where |ψ > represents the 

qubit’s quantum state, a and b are the (possibly complex) amplitudes of each state,  |a|2 and |b|2 

are the probabilities of each state, and |a|2 + |b|2 =1.   

 Also recall that all possibilities in the superposition exist simultaneously—a qubit is 

simultaneously both 0 and 1 until a measurement of the system is made; at that time the system 

irretrievably collapses to either |0 > and | 1 > with respective probabilities |a|2 and |b|2.  Repeated 

trials will allow the observer to estimate the probabilities, but on each single trial the result is 

random. 

 It is the quality of superposition that gives quantum computing its potential.  A classical 

bit carries either a zero or a one at any time, but a qubit carries both a zero and a one!  A classical 

byte holds one of 256 numbers at any time, a qubyte holds all 256 numbers simultaneously! 

 
The Feral Qubit 
 
 Thus far we have focused on a qubit as a quantum particle with two possible states, say 

|U > and |D > for spin up and spin down,  each with a specific probability.  But the qubit is a bit 

more complicated.  This section looks at the feral qubit in its native environment. 

 The Bloch Sphere below shows a qubit as a unit sphere (a sphere with radius 1) and three 

axes: a blue vertical axis for |� > and |  >, a green horizontal axis for |à > and |ß  >, and a 

black “in-out” axis for the imaginary number i.  The quantum state of the particle can be any 

                                                
5 The qubit was so named as a play on the word cubit, an ancient measure of length based on the length of a 
forearm, about 18 inches. 
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point on the outer surface of the sphere. The red arrow is a vector describing one specific state.  

The vector’s magnitude is 1 because the sphere’s radius is 1; the vector’s direction is determined 

by two angles, θ and φ. The angle θ is a counterclockwise rotation in the “flat” x, i plane between 

the x axis and the i axis; the angle φ is a vertical rotation in the x, y plane, from the y axis toward  

the x axis. 

 

 

  

 

 

                                                               

 

  

 

 

 

 

 

 

 A qubit in its pure (unmeasured) state must have a vector with magnitude 1and terminate 

on the surface of a Bloch sphere.  This is not true of a qubit in a mixed state, that is, a qubit that 

has interacted with the external system or with another qubit and has (at least partially) 

decohered: it’s magnitude (the state’s amplitude) must be < 1 so its position must be inside the 

sphere.  

 Any qubit state vector can be described by three numbers: the magnitude (always 1), θ, 

and φ. As we show in the Technical Appendix, a complex number in a space with one real 

dimension can be written in several ways—as (a0 + a1i), as |l|(cos(θ) + isin(θ), or as |l|𝑒!"where e 

is Euler’s constant (e = 2.7183…).  Suppose that there are M qubits in the space of the three-

-i 

+x = |à > -x=|ß  > 

+i 

-y = |  > 

 +y = |� > 

φ 

θ 

A Quantum Particle as a Qubit 
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dimensional Bloch Sphere shown above, with |l| = 1.  Then a general form of the kth qubit’s state 

is  

 
                                   |ψk > = cos(θk) + 𝑒!!!sin(θk)      k = 1, 2, 3, …, M 
 

in which θk is, as before, the vector’s angle between the x axis and the i axis achieved by a 

horizontal rotation in the x plane, and φk is the complex phase shift angle  arising from a vertical 

rotation in the xi plane.  

 The pace of angle θk is the qubit’s horizontal rotational velocity—its pulse. The speed of 

horizontal rotation can be fast or slow, depending on the energy in the qubit: a high energy 

particle’s heart beats fast, a low energy particle has a slower heartbeat. The speed of rotation can 

be tailored by the energy level imparted to the qubit by the computer.6 

 The complex phase shift ϕ measures the extent to which cos(θ) and sin(θ) are “out of 

phase, that is, the extent to which there is constructive or destructive interference: when φ =0° 

then 𝑒!! = +1 and they are “in phase;” when φ = π/4 then 𝑒!! = i and they are 90° out of phase; 

and when φ = π/2 they are 180° out of phase and 𝑒!! = -1.  The complex phase shift can also be 

shaped by energy inputs.  The figure below shows the effect over a single cycle.    

                                      
                                      A Qubit Cycle with Different Phase Shifts 
                                                      |ψ  > = Cos(θ) +  𝑒!!Sin(θ) 
                                                            φ  =  0°, 90°, and 180° 

                                  

                                                
6 Suppose that ω is the speed of rotation; i.e., the frequency of a cycle (say, 650 terahertz for red light), and t is the 
time in nanoseconds from the start of a cycle.  Then θ = ωt gives the angle in terms of the frequency of the cycle 
(650 trillion cycles per second) and the clock time of the cycle. 

!2#

!1.5#

!1#

!0.5#

0#

0.5#

1#

1.5#

2#

0# 10# 20# 30# 40# 50# 60# 70# 80# 90# 100#110#120#130#140#150#160#170#180#190#200#210#220#230#240#250#260#270#280#290#300#310#320#330#340#350#360#
#!!CYCLE!STATE!in!TENS!OF!DEGREES!

##

#########

####Cos(x)#+#Sin(x)#
##(0°#Phase#Shi=)#



 13 

 Note that with a 90° phase shift 𝑒!! = i and |ψ > = cos(θ); the sin(θ) component 

disappears because imaginary numbers are not measurable. This is true whenever 𝑒!! is not a 

real number.  

 

Quantum Computing Basics 

 Quantum computing is a brand new field initiated in the 1980s by (among others) the 

ubiquitous Richard Feynman.  It is just coming out of the pure research stage—a 128-qubit 

quantum computer was produced and sold in 2011.  However, it is designed for special tasks.  

No general-purpose quantum computer is in use, but its day will come. 

 A difference between a quantum computer and a classical computer is that one defines a 

piece of information as a string of bits indicated by either a “high” or “low” voltage, while the 

other defines it as a string of quantum qubits, each in a superposition of basis states (say 0  or 1).  

The data in a qubyte is in the form of eight qubits, each in a superposition taking the well-known 

form (ai|0 > + bi)|1 >); each is represented by a vector in the Bloch Sphere, with each vector 

showing the composition between the |0 > and |1 >: the more southward the vector points, the 

more likely is a |0 > reading. It is useful to remember that every superposition is a Schroedinger 

probability wave showing the probability an outcome (0 or 1) of the qubit’s quantum state. Thus, 

when the computer varies the states of its qubits it is acting on the quantum system’s probability 

waves. 

 As noted above, in quantum computing each qubit is in a superposition with value both 0 

and 1).  What this means is that in an n-qubit quantum computer, all 2n possible numbers exist 

simultaneously and can be “discovered” by suitable rotations of the state vectors).   

 Quantum and classical computing share much of the same language: a quantum computer 

consists of registers, logic gates, and algorithms that execute operations.  A register of eight 

qubits (one qubyte) represents up to 28 = 256 binary numbers, as does a classical byte. But 

simultaneity of quantum states is what makes a quantum computer massively parallel: a classical 

byte can hold only one number at a time; a qubyte can hold all numbers simultaneously.  The 

trick is to maintain the superposition long enough to allow algorithms to employ logic gates to 

process all of those numbers simultaneously. An 8-bit quantum register has 256 possible 

combinations of 0 and 1; A 30-bit quantum register simultaneously holds 1,073,741,824 

combinations! 
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 The basic raw material of a quantum computer is a quantum register formed by placing a 

number of qubits together.  This is not a simple task—remember that if a qubit interacts with its 

external system—including another qubit—it decoheres.  So the qubits must be put into 

proximity but prevented from interaction.   

 The Appendix gives a detailed description of a 3-qubit quantum computer’s calculation 

of a very simple operation: modulo-2 addition.  Our “computer” has a register with three qubits: 

q, q, and q.  Qubits q and q are input qubits, q is an output qubit.  The states of the three qubits 

are |ψ > = (a0| 0> + a1|1 >), |ψ > = (b0| 0> + b1|1 >), and |ψ > = (c0| 0> + c0|1 >).  This generates 

four possible basis states for the input qubits: |0 >⊗|0 >, |0 >⊗|1 >, |1 >⊗|0 >, an |1 >⊗|1 >, with 

respective amplitudes  a0b0, a0b1, a1b0, and a1b1.   

 The following steps are required for an n-qubit computer’s  quantum calculation: 

      • Initialize the Register:  Set the n qubit states to some arbitrary values, like all |0 >.  This  
         clears out the result of any previous calculation. 
 
      • Combine the Register Qubit Basis States: Create combinations (tensor products) of all 2n  
         possible basis states for the input and output qubits, leaving the output qubits in their 
         original initialized states.  This links the qubits together in an expanded product state space. 
 
      • Entangle the Register Qubit Basis States: Use quantum logic gates to create a superposition  
         of abbreviated (orthogonal) product states in which the unknown amplitudes are  
         eliminated and the individual qubit basis states are highly correlated.  
 
      • Complete the Calculations Using the Entangled States:  This requires repeated use of  
          quantum logic gates to manipulate the entangled input qubits, placing the results into the  
          outout qubits. 
 
       • Read the Results 
 
 Some important aspects of this series of operations are the entanglement of qubit states 

and the use of quantum logic gates, and error correction.  Entanglement will be covered more 

fully under our section on quantum information, but the basic idea is to convert pure independent 

qubit states into highly independent qubit states.  For example, the combined product space for   

q and q is  |ψ >⊗|ψ >, that is, a0b0|0 >⊗|0 > +   a0b1|0 >⊗|1 > + a1b0|1 >⊗|0 > + a1b1|1 >⊗|1 >;      

This has four basis states and four unknown amplitudes.  But after entanglement this product 

state is 

                                                                       |ψ >⊗|ψ > = √½(|0 >⊗|0 > + |1 >⊗|1 >).       
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so two important things have happened: the unknown amplitudes have been replaced by a known 

amplitude √½, and the two intermediate basis states have disappeared, leaving the remaining 

states in perfect correlation: q and q always have the same spin direction!  

 The quantum logic gates are (as was noted above) not unidirectional digital circuits as in 

classical computing.  Instead, they are unitary matrices which can be implemented quickly with 

minimal chance of error, and which are bidirectional:  just as the inputs are used to produce an 

output, the output can be used to reproduce the inputs. 

 This last property is extremely important in error correction.  Like a classical computer, a 

quantum computer can generate errors.  But unlike a classical computer, which repeats the 

operation until it is assured of a correct result, a quantum computer can reverse the logical gate 

and immediately determine if there is an error.  

 

Advantages of Quantum Computing 

 What do we get from a quantum computer that we don’t get from a classical computer? 

The property that all states simultaneously exist in a superposition gives quantum computing its 

power: a quantum computer processing superpositions with a large number of basis states would 

be a “massively parallel” computer that can simultaneously do millions of operations in the time 

a classical computer takes to do just one operation. Thus, quantum computing’s primary 

advantage over classical computing is that it is faster.   

  Quantum computation is also reversible: you can start with an output string from a 

register and go back to the input string that generated it.  The ability to recreate a facsimile of the 

original state and to check it against the actual original state means that you only need one step to 

identify an error.  This avoids the repetition of operations in classical computers and the adverse 

consequences of repetition: computational redundancy leading to reduction in processing speed 

and heat buildup.   

 The reversibility of quantum computations arises from the linearity of quantum 

mechanics and the use of unitary gates (matrices) to process data.  A matrix can be inverted to 

reproduce the input state, while the nonlinear wiring in classical computers prevents reversal of 

operations.   
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 The speed advantages of quantum computers show up in a variety of applications.  One is 

in search algorithms. A simple example is reverse phone number lookup.  Suppose that there are 

N phone numbers in a zip code and you want to find the name and address of the owner of 

number 555-1212.  With classical computing you require an average of N/2 lookups, and as 

many as N lookups might be needed.  For New York City, with (say) ten million residents 

(assuming each has a listed phone) there would be an average of five million calculations, and as 

many as ten million.  It has been established that a quantum computer would require only 10,000 

calculations. 

 The increase in speed also enhances code-breaking (a two-edged sword). We saw above 

that a Public Key Encryption Protocol consists of a very large number with, say, N digits; that 

number and an exponent make up the public key because they can be made accessible to anyone.  

The first step in decoding a message is to find the two prime factors of N (call them p and q).  

This prime factorization is a one-way function because it is easy to multiply p and q to get N, but 

it is almost impossible to reverse that to find the values of p and q when N is very large.  For 

example, if N = 200 (which is not “very large”) classical computing would require hundreds of 

computers working in parallel for a year.  If N = 500 classical computers can never complete the 

prime factorization.  But a quantum computer can do a 500-digit number in only 16 times the 

time required by a classical computer for a 200-digit number.  Recent PKE methods use N with 

1,024 bits, way beyond the scope of classical computing. 

 Finally, quantum computing is a boon to the scientist beyond the increase in speed.  

Quantum computers can be programmed to create Oracles.  An Oracle is a process that takes a 

question as an input and gives a yes/no answer.  A simple example is function identification. 

Suppose that a function f(x) exists where there are N possible integer values of x (x = 1, 2, …, N). 

You know that f(x) is all zeros, all ones, or a mix of zeros and ones, and you want to know which 

is true. Classical computing would require that you do as many as N calculations to determine 

the answer: the average required number of calculations is 1 + N/2.  So if f(x) is a 512-bit binary 

number a classical computer operating on each bit would require an average of 257 operations, 

and a maximum of 512 operations.  A quantum computer with an Oracle can answer the question 

with just one calculation.  
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Difficulties of Quantum Computing 

 A quantum computer derives its power from quantum superposition, but, as noted above, 

this also is a source of difficulties.  One difficulty is maintaining the superposition.  We know 

that measuring a quantum system causes the superposition to vanish, leaving only one state: if a 

superposition of | 0 > and | 1> is measured, it collapses to either | 0 > with probability |a|2 or to 

| 1 > with probability |b|2.  A dilemma exists: the operation of a quantum computer requires 

superpositions, but the detection of a result destroys the superpositions.  Furthermore, the basis 

state that is revealed is random: if you do a measurement you get one state in proportion |a|2 of 

the detections and the other state in proportion |b|2.  Because the superposition collapses at the 

first measurement, it can’t be used for a sequence of calculations; and because the measured 

result is random, it can’t be used to do calculations.   

 How do you detect results without losing the superposition? There are ways to do this 

(for example, using quantum entanglement) but they increase the complexity of the machine.  

The 2012 Nobel Prize in Physics was given to two physicists who measured the quantum state of 

photons without destroying their superpositions, so progress is being made on this difficulty. 

 A second difficulty is the copiability problem.  Classical computing has the property that 

data can be copied to a permanent storage device and used for backup or shared.  A classical 

copier simply takes each character on a page and transmits it to the same space on a blank page, 

outputting both the original page and its copy.  But, as we will see, the No-Cloning Theorem of 

quantum computing says that a quantum computer’s data (qubits) can not be copied. 

 

The Copiability Problem: No Cloning Allowed! 

 As noted above, the No-Cloning Theorem says that quantum data can not be copied.  By 

“copy” we mean the creation of a second qubit or string of qubits that is an exact replica of the 

first without destroying the first.  If you are satisfied with losing the original qubits the issue is 

not copiability because you are not copying the original state, you are merely sending it to 

another place (perhaps a storage device or another computer); this is called teleportation. 

 Suppose you did have a copying machine that takes a qubit as input and creates the 

output of a copy plus the original qubit, just as a Xerox machine outputs the original page and a 

copy.  The original qubit has two basis states, | � > and |   >, with superposition  
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|ψ > = a| � > + b|   >.  We want our quantum copier to give a superposition with two down 

spins and two up spins, that is, since basis states are combined by tensor products, we want 

a2(|�>⊗ |�>) +  b2(|  >⊗ |  >).  But this is not what you will get.  Creation of a superposition 

with itself is the tensor product |ψ>⊗ |ψ >, resulting in the original superposition and a copy. But 

|ψ>⊗ |ψ > = a2(|�>⊗ |�>) +  ab(|� >⊗ |  >) + ba(|  >⊗| � >) + b2(|  >⊗ |  >). The correct 

tensor product includes the two opposed spins (up/down and down/up).  Only if those opposed 

spin states are zero czn you copy a quibit.  That occurs when (1) either a or b is zero, i.e. only 

one spin can possibly occur, or (2) (|� >⊗ |  >) = (|  >⊗| � >) = 0, i.e. opposed spins can not 

occur.  Condition (2) requires the two spin states to be “orthogonal,” meaning that the direction 

of one qubit’s spin is independent of the other qubit’s spin direction.  

 Thus, there are circumstances that allow quantum copying, but in general it is not 

possible.  When we look at Dense Coding we will see that the Bell States that it relies on can be 

copied because there are no interaction terms.  But in general, quantum states can not be copied. 
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Classical Cryptology 
 

 In this section we address an important application of classical computing: cryptology.  

The field of Cryptology—the science of communicating in codes—consists of two closely related 

but distinct subfields: cryptography, the writing of coded messages, and cryptanalysis, the 

reading of coded messages. A cryptanalyst’s job is to decode a message that a cryptographer has 

created.  The cryptanalyst must uncover the cryptographer’s key if he is not already privy to it.  

The cryptographer is, of course, privy to his key, and is determined to design it in a way that 

stumps the unauthorized cryptanalyst. 

 There is a very long history to the dance between coding and decoding, dating back to the 

first time a third person came onto the planet when Adam asked Eve to bring a basket of those 

big red berries (apples).  Codes have ranged from very simple (pig latin, alphabet substitutions) 

to very complex (the German Enigma code of World War II; the code embedded in a sculpture at 

the CIA’s Langley complex, still not fully decoded even by the CIA). Virtually every code has 

been broken, often at great effort and expense, and each broken code stimulates new efforts to 

restore secrecy. 

 The crucial element in any code is a key that allows a plaintext message to be encoded 

and decoded. As we will see, the key for coding might not be the key for decoding, but the two 

must be related in order to have intelligible messages. There are two crucial problems associated 

with the key: distribution and authentication.  The key distribution problem is simply the 

problem of maintaining the key’s secrecy—only the sender and the intended receiver should 

have the key.  Two ways to keep a key opaque to third parties are to ensure that it is not 

distributed outside the inner circle, and to never reuse the same key. The authentication problem 

is that the receiver must have a way to determine that the message received, even if constructed 

with the proper key, was sent by the proper sender and not by third party who wants to send 

misinformation.  

 We will discuss two important applications of classical cryptology, the One-Time Pad—

considered the only method that, done properly, can not be decoded—and Public Key Encryption, 

a method used in a variety of important everyday applications that can be broken but only at 

great expense. 
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The One-Time Pad 

 The One-Time Pad (OTP) is the only known classical coding system that ensures secrecy 

when properly used.  It consists of a randomly selected string of letters or characters—the key— 

known only to the sender and the intended receiver.  This string is often printed on a pad of paper 

with each page containing a string of random letters; one page is used for each message (modern 

computers use binary numbers).  The sender and receiver both have the same pad and share a 

way to determine which page on the pad is used to code the message: either each party destroys a 

page after use and the next message is encoded/decoded with the following page, or a code is 

assigned that refers to the page used. The pad’s text is often broken into groups of five letters so 

that short words could not be identified and used to break the code. 

 

                                                
                                           A Russian One Time Pad 

 

 Suppose that H at headquarters wants to send the message “Attack at Dawn” to F, the 

field commander. The message “Attack at Dawn” is only 12 letters, so three Q’s are attached to 

fill out a 15-letter message.  The OTP approach works as in the following table.    

 Line 1 is the plaintext of the message. The first cryptographic step—line 2—is to assign a 

number to each letter; our example uses the order of the English alphabet: 01 for A, 02 for B, and 
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so on up to 26 for Z.  The encoder then refers to the pad of randomly selected (the letters on line 

3).  We assume that  R  D  Y  K   Z       Q  M  F   K  O        D   W  B   N   U  are the first 15 letters 

on the pad page.  On line 4 he assigns the number for each pad code letter (R is letter 18 in the 

alphabet, and so on). 

 Line 5 is the sum of lines 2 and 4.  If this sum exceeds 26 (the number of letters in the 

alphabet) then 26 is subtracted from that sum and line 6 is derived; this is the list of letter 

numbers that will be sent.7  Line 7 is the actual message sent: SXSLC BNZOP AKSEL.    

 

One-Time Pad Example 
Coding the Message 

Note: Underscored numbers on line 6 have 26 subtracted from line 5 

 

Decoding the Message 

Note: Red numbers in line 12 are negative and 26 is added to them to get line 13 

 

F receives the message (line 8) and reverses the encoding method.  He first translates each 

letter received (line 8) to its appropriate number (line 9).  Then he refers to the page on his pad 

for the pad code (line 10) and assigns numbers to each of those letters (line 11).  He then 
                                                
7 The letter recorded is calculated modulo 26: after 26 the sequence is started again at 1. 

1 Text  A T T A C  K A T D A  W N Q Q Q 

2 Text Num  01 20 20 01 03  11 01 20 04 01  23 14 17 17 17 

3 Pad Letter  R D Y K Z  Q M F K O  D W B N U 

4 Pad Num  18 04 25 11 26  17 13 06 11 15  04 23 02 14 21 

5 (2 + 4)  19 24 19 12 29  28 14 26 15 16  27 37 19 31 38 

6 SUB 26 if ln5 >26?  19 24 19 12 03  02 14 26 15 16  01 11 19 05 12 

7 Coded Text  S X S L C  B N Z O P  A K S E L 

8 Cipher Rec’d  S X S L C  B N Z O P  A K S E L 

9 Text Num  19 24 19 12 03  02 14 26 15 16  01 11 19 05 12 

10 Pad Letter  R D Y K Z  Q M F K O  D W B N U 

11 Pad Num  18 04 25 11 26  17 13 06 11 15  04 23 02 14 21 

12 (ln 11 -  ln 9)  01 20 06 01 23  15 01 20 04 01  03 12 17 09 09 

13 ADD 26?  01 20 20 01 03  11 01 20 04 01  23 14 17 17 17 

14 Decoded Text  A T T A C  K A T D A  W N Q Q Q 
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subtracts line 11 from line 9 (reversing H’s addition of lines 2 and 4).  Some of the numbers so 

derived will be negative, so F adds 26 to those to get line 13.  Finally, line 14 reveals the 

message “Attack at Dawn.” 

The One-Time Pad was invented in the 1880s.  It has several variations, but in all cases it 

has the same weaknesses: developing a completely random string of letters or other symbols for 

letters is not as simple as it seems, and ensuring that the key is available only to authorized 

parties is difficult.  When a one-time pad code has been broken it is often because the key has 

been reused or the letters are not truly random.  Barring these two security breaches, the method 

is known to be perfectly secure. 

The OTP’s excellent security arises because it is impossible to reconstruct the pad code 

from the coded text, and because there is typically more than one sequence of pad code letters 

that reveals a sensible message.  Not only must the intercepting agent decode an intelligible 

message, he must also select the correct message from among the several intelligible messages.   

Modern OTP’s use computers and binary codes of zeros and ones to encode and decode 

messages.  For example, the text might be 10111 and the pad code might be 01001. The sum is 

11110 (note the last digit—1 + 1 = 0 in binary arithmetic modulo 2).  The procedure is the same, 

but a computer is fast and allows the cryptanalyst to rapidly encode a message (and the hacker to 

rapidly search for binary numbers to decode it).  

As noted above, the OTP has perfect security, a term coined by Claude Shannon.  It can not 

be broken so long as the pad code is completely random and the pad is securely distributed.  It 

does, however, have two weaknesses: 

•  The OTP has an authentication problem.  A third party can intercept the original  
    encoded message and substitute a new pad code that gives a different decoded message, 
    then pass the message on to the authorized party. 
 
•  The OTP is an inconvenient and insecure way to distribute the code keys, especially for  
    long messages.  In the old days, heavy pads of paper were used (though technology  
    allowed increasingly small pads read with magnifying glasses); with modern computing,  
    flash drives and CDs can be used.  But none of these are impervious to interception. 

 
  
Public Key Encryption (PKE)    
 
 In the 1870s the British mathematician and economist William Stanley Jevons 

(discoverer of the sunspot theory of business cycles) investigated the application of “one-way 
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functions” to cryptography.  A one-way function is a mathematical function that is easy to solve 

in one direction but extremely difficult to solve in the reverse direction.  A simple example is he 

factoring of a number into two prime numbers: it is easy to multiply two known prime numbers 

to get a larger (not necessarily prime) number.  But it is difficult to take a large number and find 

two unique prime factors.  

 This is the basis of the most frequently used PKE system. In 1977 three MIT scientists—

Ronald Rivest, Adi Shamir, and Leonard Adelman—proposed the RSA Method of Public Key 

Encryption. The RSA algorithm is based on number theory, particularly prime numbers and 

modular arithmetic.  Its security is due to the extreme difficulty of factoring large numbers into 

two prime numbers.  However, in recent years there have been advances in number theory that 

have made prime factoring of large numbers easier; these have weakened RSA’s security.   

 A very simple example is the two binary numbers 11 and 10001; in decimal notation 

these are the prime numbers 3 and 17.  Their product is 110011 (the number 51).  Constructing 

the product 110011 from the two known prime numbers is a snap, but if one knows only the 

number 110011 it takes some time to find that its two prime factors 11 and 10001.  The time 

required increases at least exponentially as the number length increases, and with larger numbers 

there can be multiple prime factors.  

 To use a more complicated—and more realistic example—consider a 512-bit number in 

binary code.  The largest possible value occurs when all 512 bits are ones; that value is 

∑    !!""2! = 1.341x10154; it has 155 digits and is, as the astronomer Carl Sagan would say, 

“…billions and billions and billions…and billions.”  The task of factoring a 155 digit number 

into two primes is almost overwhelmingly complicated, and there can be many prime factors to 

choose from.  

 A simple example of the RSA method of PKE is given below.  H wants to send F the 

single letter “A” for “ATTACK AT DAWN” (Desktop computers can not implement more than 

one letter messages because they don’t record enough significant digits, so the example chosen is 

simply a one-letter message.) 
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The PKEP-RSA Method 

     Step 1: Choose the private and public keys 

1. Choose two prime numbers, p and q:                                                   p = 23, q= 41  

2. Compute the product n = p•q:                                                              n = 943  

3. Compute the number r = (p-1)(q-1):                                                     r = 880 

4.   Find a number k that is 1mod(r) (see appendix):8                                    k = 2641  

5.   Compute the prime factors of k, e and d, for which e*d = 1mod r):    e  = 3, d  = 587                       
       The numbers n and e are the public key components used to encode the message. 
       The number d is the private key required (along with the public key) to decode.  
 

Step 2: Encode the message 

6.   Convert the plaintext message to ASCII Code:  

                                    PLAINtext   = A     ²    ASCIItext    = 65 

7.   Encodes the ASCIItext as CODEtext = (ASCIItext)emod(n):    

                                    CODEtext = ASCItexte mod(n) = (65)3mod(943) = 212                                              

8.   Send CODEtext 123 to recipient with private key under separate cover 

 

Step 3: Decode the Message 

9.   Receiver Decodes as (ASCIItext) = (Codetext)dmod(n)   :  

                                   ASCIItext = (212)d mod(943)  

                                                      = 65 

10.  Receiver converts ASCIItext to PLAINtext :    A 

 

 PKE has a variety of uses beyond spywork.  Although we don’t realize it, PKE is 

encountered every day.  Commercial banks use it to verify the authenticity of online access bank 

accounts; digital signatures are used to verify the authenticity of electronic documents; digital 

certification is used to verify that your computer has an authorized relationship with a website 

(you have undoubtedly been asked by your computer to verify a “certificate”).   

                                                
8 2641 = 2(880) + 1 so it is a multiple of 880 with remainder 1, that is, it is 1mod(880). 
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 PKE has several advantageous properties: it is easily coded and decoded by computer; It 

is extremely difficult to break, although algorithms developed in recent years have made it less 

secure; and the keys can be reused.  But there are weaknesses: PKE is not perfectly secure and 

can be broken, though not without great effort and expense; PKE is subject to the key 

distribution problem, that is, if the private key falls into an evildoer’s hands, the code is broken 

because he has both the public key used to encode the message and the private key required to 

decode the message;  and PKE also has the authenticity problem—if the private key is known to 

an intruder he can construct misleading messages that will seem legitimate to the intended 

recipient, thus engaging in disinformation. 

 One approach to the key distribution problem is to have H encode a message using the 

public key (eH, nH), then send the message to F; the message is simple, it is the public key.  H 

keeps the private key, dH, that is required for  decription.  Thereafter, any message F wants to 

send to H can be encrypted with H’s public key, and H can decrypt it with his private key (dH).  

The private key is never out of H’s hands so it is more secure than if H had sent the private key 

to F.  This works only in one direction—F can encode a message and send it to H, but if H uses 

the same public key to send messages to F, F must have the private key to decode, and the 

distribution problem returns. But two-way communication can be easily restored if F constructs 

his own public key (eF, nF) and private key (dF), sends the public key to H so H can encode 

messages to F, then uses his private key to decode H’s messages.   This allows both H and F to 

communicate by RSA codes with no key distribution problem.  
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Quantum Cryptology 
 We have investigated two popular forms of classical cryptology: the One-Time Pad 

system and the RSV method of Public Key Encryption.  We have also seen that one of the 

difficult issues in both is the key distribution problem: an intruder can obtain the key required to 

decrypt a message either by intercepting it when it is sent to the code recipient, or by theft.  

Indeed, if the key distribution problem can be solved, a One-Time Pad system is perfectly secure. 

 So the question is, “Is there a quantum method to solve the key distribution problem?”  

Can A find a way to give B the key without fear of an eavesdropper intercepting the key and 

either decoding messages or creating false messages to pass on to B. The answer is “yes.” 

 

The BB84 Key Distribution Method 

 Developed in 1984 by Charles Bennett and Gilles Bressard, the BB84 method is 

surprisingly straightforward.  Messages are sent in 0’s and 1’s, as in classical cryptography, and 

the key is also in zeros and ones.   

 First, A sends B a batch of quantum particles, say electrons, that have been measured so 

that the spin states are known to A. A has measured some particles for z-axis spin, others for x-

axis spin; the spin axis for each particle has been randomly determined.  It is essential that the 

number of qubits sent is sufficiently greater than the number of qubits needed to form a key.  If 

the message is, say 800 bits long, the number of qubits sent by A must be (much) greater than 

800. 

 Second, B measures the spin of each qubit.  He does not know which axis A measured, so 

he randomly chooses either the x or z axis. Line 3 shows his choice of axis, and line 4 shows the 

result he gets.  

                         The BBQ84 Method of Key Distribution 
A Measures |↑ >  |→  > | ← > |↑  > | ↓ > | ← > |←  > |→ > 

A Knows + + - + - - - + 

B Measures z z x Z X x z x 

B Finds + - - + - - - + 

         

B Says Z z x Z X x z Z 

A Responds Yes No Yes Yes No Yes No Yes 

Key 1 na 0 1 na 0 na 1 
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 Third, A and B have a phone conversation; it can be on an open line so an eavesdropper 

(E) can listen in.  For each particle B reports the spin axis he tested, and A then agrees or 

disagrees that that was the spin axis she found for that particle.  For example, for the third 

particle B reports “I tested the x axis”, and A says “Yes, that was the axis I measured.” For the 

second particle B reports “I tested the x axis” and A responds “No, I sent a z-axis spin.”  

 Finally, B discards the particles on which he and A tested different axes (particles 2, 5, 

and 7), leaving particles 1, 3 , 4, 6 and 8.  Both A and B have agreed that the spin directions for 

these particles are + –  + – +, so they agree that the first five bits of a key are 10101.  If the 

number of qubits sent is enough, they can find 800 qubits necessary to form a key.  

 So now both A and B have agreed on a key.  Suppose a third party, E, has listened in on 

the phone call.  All E knows is the positions of the qubits on which A and B measured the same 

axis; this tells her nothing about the spin states found on those axes.  So the key has been 

distributed with perfect security. 

 Suppose the message to be sent by A is 00111.  A encodes this message (recall that  

1 + 1 = 0 with carry of 1; 0 – 1 = 0 with carry -1) as follows 

                     Text Message                0  0  1  1  1 

                  + Key                               1  0  1  0  1 

                  = Coded Message            1  0  1  0  0 

and B decodes the message by subtracting the key from the coded message: 

                     Coded Message            1  0  1  0  0 

                  +  Key                             1  0  1  0  1 

                  = Text Message              1  0  1  0  0 

 The BB84 method allows joint selection of a key with no possibility that an intruder can 

learn the key.  It has the added advantage that A and B can determine whether an eavesdropper 

has intercepted the particles and attempted to decode the message or attempted to modify the 

message before it was received by B.  Suppose that E has intercepted the particles and measured 

their spins, then passed the particles on to B.  With two spin axes, there is a 50% chance that she 

will have measured the wrong axis on any given particle.  This error will show up as a “reset” of 

the correct axis and there will be a 50% chance that B’s measurement of the correct axis (when A 
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and B agrred on that axis) will be wrong.  So for 25 percent of the qubits E will have inserted an 

error and the message B decodes will be unintelligible.  Thus, E announces her presence!  

  The BB84 method allows restoration of the simple One-Time Pad system with resolution 

of both the key distribution problem and the message authentication problem.  But the same key 

(string of qubits measured by A) can not be reused.  So for each message a new string of qubits 

must be sent.  Inconvenient, but very feasible. 
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Quantum Information 
 In this section we review some important features of quantum information theory.  What 

types of quantum information exist? How many quantum bits of information are needed to equal 

a classical information bit?  Is quantum information “more efficient” than classical information? 

 

Bits, Qubits, and Ebits: Bennett’s Rules 
 
 There are three basic types of information: bits (classical 0, 1 data), qubits (quantum two-

state particles) and ebits.  Bits and qubits have been discussed above.  The addition to 

information theory is the ebit.   

 An ebit is a quantum particle with total zero spin (TZS = 0). It might have z-spin, x-spin, 

and y-spin, but its total spin—the “average” of the three spins—is zero.  An example is the 

photon—the particle that carries electromagnetic radiation.  Even after a photon decays, the 

result—a positron and an electron—each having opposite characteristics, thereby maintaining 

TSZ.  These are entangled particles because they share a single probability wave:  if the z-spin of 

the electron is measured as ↑ the z-spin of the positron must be ↓.   

 We have also seen in Part 2 that entangled particles remain entangled even at great 

distances from each other. The example given was creation of a positron-electron pair with the 

electron sent to A and the positron sent 300,000 km (one light second) away to B.  When the 

particles are received, their spins are unknown, but if A measures her electron’s z-spin and finds 

that it is ↑ then B will, with certainty, find his positron’s z-spin is ↓.  

 Charles Bennet, a leading information scientist and the co-founder of the BB84 key 

distribution method, has investigated the equivalences between bits, qubits, and ebits in terms of 

their ability to carry bits of information.  Using the notation ≥  to mean “at least as much as,” he 

proposes the following rules: 

1.  1 qubit ≥  1 bit:  as we have seen, a qubit can always carry one bit of information. 

2. 1 ebit  ≥  1 qubit: an ebit can carry at least as much information as a qubit. 
 
3. 1 ebit + 1 qubit ≥  2 bits.  An ebit and a qubit carry at least as much information as two 

bits.  This is called the Dense Code Rule; it is discussed below. 
 
4. 1 ebit + 2 bits ≥  1 qubit.  This is the Quantum Teleportation Rule, also discussed below. 
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 Rule 1 is that a qubit can always carry at least one classical bit of information. A qubit’s 

quantum state until it is measured is the superposition a| � > + b| ↓ >.  Suppose A wants to form 

the number “1” with his quantum computer using the code 1 = | � > and 0 = | ↓ >.  He can do 

this by measuring the spins of several particles and selecting one with an up spin. Once measured, 

the particle retains that spin unless it is remeasured on another axis, at which time a 

superposition returns to the first axis measured.  So A can select a qubit with up spin on the z-

axis, send it to B along with information on which axis was measured, and B can remeasure the 

spin on the z-axis, retrieving a 1. Thus, one qubit can carry one bit of information.  In this way 

any binary sequence can be formed with a number of qubits equal to the number of binary digits 

required.  

 It would be more efficient to use one qubit to carry two (or more) bits of information.  

Suppose we use the quantum code 00 =|↑↑ >, 01 = |↓↓ >, 10 = |→ → > 10, and 

11 = |← ← >; this requires two qubits. To create the number 10 (decimal 2) in a single qubit 

requires a particle whose quantum state is |→ → > = 10.  In Part 2 we saw that a right spin is a 

superposition of up and down spins, that is, (|→ >) = √½(|↑ > +  |↓ >).  So by the Composite 

Product Rule two right spins |→>|→> is the square of one right spin, |→>)2, or   

½(|↑↑> + |↑↓> +  |↓↑>  |↓↓ >).  Thus |→ → > is not |↓↓ >. The important lesson is that a qubit 

can not carry more than one bit of information.  

 Rule 2 is that an ebit can always carry at least one qubit of information.  From Rule 1 we 

see that the if spins are orthogonal (in the sense defined above) then an entangled bit with z-spin 

has superposition ½(|↑↑> +  |↓↓ >)—equivalent to two right spins and, therefore, giving the two 

bit code 10.   So one ebit  can carry two bits of information.  An ebit appears to be “more 

efficient” that a qubit.  But is it really more efficient? The answer is negative—the ebit itself 

consists of two qubits, which  Rule 1 says should carry two qubits of information. 

 Bennett Rule 3 is that one qubit plus 1 ebit can carry at least two bits of information.  

This is the rule underlying Dense Coding, and we will see that it is correct but that no more than 

two bits of information can be carried by a qubit and an ebit. 

 Bennett Rule 4—that one ebit plus one qubit carries at least two classical bits is the 

foundation of Teleportation, which we cover after dense coding. 

 Before discussing these rules we need to solidify the notion of entanglement.  This brings 

us to the maximal entanglement of qubits, called Bell States after the physicist John Bell. 
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Maximal Entanglement (Bell States) 
 
       Dense Coding and Teleportation, the subjects of Rules 3 and 4—and of the next two 

sections—rely on a particular form of entanglement—maximal entanglement—in which two 

qubits always show either the same or opposite values (spin, polarization, etc).  We focus on the 

simple case of two entangled qubits.  

       Suppose that A owns qubit qA and B owns qubit qB, each qubit having basis states  

| 0 > and | 1 >. With two qubits there are four joint states: | 0A0B >, | 0A1B >, |1A0B >, and |1A1B >, 

and the system is a superposition of these four unentangled states. 

       Now suppose the two qubits are maximally entangled.  The result is that the system 

has four Bell States. The Bell states are the four quantum states | B0 >, …, | B3 > shown below.    

                                    

                                    | B0 > =  √½(| 0A0B >  +  |1A1B >) 

                                    | B1 > =  √½(| 0A0B > –  |1A1B >)    

                                    | B2 > =  √½(| 0A1B > +  |1A0B >)  

                                    | B3 > =  √½(| 0A1B > –  |1A0 B >)   

  

       State | B0 > can be interpreted as “if A’s qubit is zero, then B’s qubit is zero; if A’s 

qubit is 1, B’s qubit also is 1.”  In two of the states (|B0 > and |B1 >) A and B hold qubits with the 

same spin, and in the other two Bells states A and b have qubits with opposite spin. Each Bell 

state is said to be maximally entangled because the qubit states are perfectly correlated—either 

they are both the same or they are both opposite.   

       Note that in both | B1 > and | B3 > the second joint state is an antistate.  In Part 2 we 

discussed the formation of antistates by rotating particles around specific axes.  The amount of 

rotation required to convert a basis state to its antistate depends on the type of particle—boson or 

fermion—and the axis of rotation.  In any event, transforming to an antistate inverts the 

probability function. 

 Any of the Bell states can be derived from the others by suitable Bell Rotations.  For 

example, | B1 > can be derived by a 180° rotation of  | B0 > around its z axis, | B2 > can be 

derived by a 180° rotation of  | B0 > around its x axis, and | B3 > can be derived by a 180° 

rotation of  | B0 > around its y axis.   
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 The four Bell states can also be added or subtracted to obtain the following Bell Additions 

                                         | B0 > + | B1 > =  √½(| 0A0B >) 

                                         | B0 > -  | B1 > =  √½(| 1A1B >) 

                                         | B2 > + | B3 > =  √½(| 0A1B >) 

                                         | B2 > -  | B3 > =  √½(| 1A0B >) 

 Thus, each possible state of the two qubits can be derived from addition or subtraction of 

Bell States, As we will see, much can be done with Bell States, Bell Rotations, and Bell 

Additions. 

 Bell states have a number of desirable properties.  Bell states are mutually orthogonal, 

meaning that the chance of | B2 > occurring does not depend on whether another Bell State 

occurs.  This is why Bell States are maximally entangled:  there can be entangled states in which 

two states are entangled so that the chances of those two states occurring are only loosely 

correlated;  in that case you can’t definitively know one state from knowledge of the other.  But 

with Bell States you can know with certainty what the states are.   

 Another nice property is that Bell states can be copied.  This comes directly out of their 

orthogonality.  Thus, the tensor product  | Bi >2 creates two qubits with state | Bi >; the No 

Cloning Theorem does not apply.  Another desireable feature is that Bell states can be measured 

without decoherence (superposition collapse).  This allows the state of an ebit to be determined 

without destroying the ebit. 

 These properties underlie the central role that Bell states play in Dense Coding and 

Teleportation  in which qubits and Bell state ebits are combined to achieve certain goals that are 

otherwise impossible under the laws of quantum mechanics. 

 

Dense Coding 

       The goal of Dense Coding is to overcome Bennett’s Rule 1 by allowing one qubit to 

send two classical bits of information,.  But dense coding has a somewhat strange procedural 

component requiring a great deal of preparation and communication between A and B, and its 

advantages depend on the congestion and expense of operating a quantum communications 

channel to transmit/receive qubits. 

 Suppose that A and B work in adjacent offices in the SCA (SpyCraft Agency).  Each has 

their own qubit with unknown states |qA > = aA|0 > + bA|1 > and |qB > aB|0 > + bB|1 >.  A and B 
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get together to create an ebit in a specific  Bell State, say | B0 >AB =  √½(| 0A0B >  +  |1A1B >); thus, 

qA and qB have been fashioned to always have the same spin direction.  Both A and B know that 

180° rotations along an appropriate axis will convert this Bell state to any other Bell state. 

 A and B have agreed on a two-bit code based on Bell states, 

 

                                    | B0 >AB =  √½(| 0A0B >  +  |1A1B >)    ⇒   00 

                                    | B1 >AB =  √½(| 0A0B > –  |1A1B >)       ⇒   01 

                                    | B2 >AB =  √½(| 0A1B > +  |1A0B >)    ⇒   10 

                                    | B3 >AB =  √½(| 0A1B > –  |1A0 B >)     ⇒    11 

 

 A and her qubit are sent off to do field work in a galaxy far far away, armed with her 

qubit qA.  B stays at headquarters with his qubit qB.  They have a quantum channel through 

which they can communicate via qubits.  At some point A wants to send the message 01 to B.  

To do this she wants to send her qubit qA to B with characteristics that will tell B that | B1 > is the 

relevant Bell state, i.e. 01 is the two-bit message. 

  A puts qA into her digital circuits and rotates it on an appropriate axis. Because qA is 

entangled with qB, and because they were entangled so that they would have the same spin 

directions, her rotation of qA induces the same rotation in qB even though it is in that galaxy far 

far away.  A knows that if she wants to send 00 she does nothing to her qubit, if she wants to 

send 01 she rotates it x-axis by 180°, to send 10 she rotates the y-axis by 180°, and to send 11 

she rotates the z-axis by 180°.  So A rotates qA on its x-axis by 180° and sends it to B.  B doesn’t 

know what the spin state is, but he puts qA into his Bell State Machine along with qB.  He 

determines that the two qubits have the same spin direction, so the message is either |B1 > or  

|B1 >.  He also finds that the Bell state involves an antistate, so the message must be |B1 >.  

Voila! Message received! 

 So sending one qubit has done the work of two qubits, breaking Bennet’s Rule 1.  But has 

it really?  Recall that the dense code process began with two qubits (qA and qB) so it really took 

two qubits (plus a lot of intermediate fiddling) to send two classical bits of  information.  

However, only one qubit needed to be transmitted from the field to send those two bits.  If the 

quantum channel used to transmit qubits is congested, dense coding could be an improvement.  

But if use of the quantum channel is free, dense coding appears to have no advantage over 
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simply sending two qubits with appropriate spins.  However, Bennett’s Rule 3 is satisfied: it took 

one qubit plus one ebit to transmit two bits of information.  One can’t do better.  

 

Quantum Teleportation 

  Quantum Teleportation is the converse of Dense Coding: instead of using a qubit to send 

a two-bit message, it uses a two-bit message to send a qubit.  Recall that the No Cloning 

Theorem says that you can’t make a copy of a qubit and keep the original.  Teleportation allows 

transmitting a qubit in a fashion that destroys the original qubit, thus bypassing the No Cloning 

issue.  

 The qubit could, of course, simply be transmitted from A to B via Qubit Xpress, a 

quantum channel that allows A and B to directly communicate.  This would be subject to the law 

of Special Relativity: nothing can travel faster than light speed.  The advantage of teleportation is 

that it happens instantly: the qubit is not “sent,” it is created instantly at B’s location. 

 The Teleportation protocol starts from the Dense Coding protocol:  A and B each have a 

qubit:  A has qA with unknown state | qA > = aA| 0 > + bA| 1 >; B has qB in unknown state  

| qB > = aB| 0 > + bB| 1 >.   A also has a second qubit, qC, with state |qC > = aC| 0C > + bC| 1C >. 

 Step 1 in the teleportation scheme occurs at headquarters.  qA and qB are maximally 

entangled to create an ebit in one of the four Bell states; let’s say that the chosen Bell state is 

| B0 >AB =  √½(| 0A0B >  +  |1A1B >.  A and B then reclaim their two (now entangled) qubits. At 

this point A has two qubits (qA and qC) and B has qubit qB.  After Step 1 there is a system of 

three qubits: qA and qB are entangled; qC is not entangled but is still part of the quantum system. 

The three cubit system has a quantum state described as the tensor product of | B0>AB and |qC >.  

 Step 2 occurs after A goes into the field (to that galaxy far far away) with her two qubits, 

leaving B at headquarters with his qubit qB.  After settling into her new lab, A learns that B’s lab 

is experiencing a shortage of type-C qubits.  So she decides to “send” B a cubit with the exact 

characteristics of her extra qubit, qC.   Of course, there is a problem: she doesn’t know those 

characteristics, and if she tries to measure them the superposition of states in qC collapses.  She 

might send it by Qubit Express, but that is ruled out. What is a SpyCraft agent to do? 

 A decides to entangle her two qubits in one of the four Bell states |B0 >AC, |B1 >AC,  

|B2 >AC, or |B3 >AC.  By entangling qC with qA—which is already entangled with qB—she has 

very cleverly entangled qC with qB!  The resulting three qubit state is the tensor product  
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        | qAqBqC  > = √½{|B0 >AC ⊗ (aB| 0B > + bB| 1B >) + |B1 >AC ⊗ (aB| 0B > – bB| 1B >)  

                                   + |B2 >AC ⊗ (bB| 0B > + aB| 1B >) + |B3 >AC ⊗ (bB| 0B > – aB| 1B >)} 

 

so A knows that the new three qubit state is a superposition of one of the following four equally 

probable states: 

                                               | B0 >AC⊗ (aB| 0B > + bB| 1B >)  

                                                |B1 >AC ⊗ (aB| 0B > – bB| 1B >)  

                                                |B2>AC ⊗ (bB| 0B > + aB| 1B >)  

                                                |B3>AC ⊗ (bB| 0B > – aB| 1B >)} 

  

 A uses her Bell State Machine to measure the Bell state in which qA and qC are 

entangled—remember that Bell states can be measured without decoherence.  So now she knows 

which of the four states the system is in.  Suppose it is the third: B2 >AC ⊗ (bB| 0B > + aB| 1B >).  

 Having gotten all the information she needs, A measures qA and qC, causing their 

superpositions to collapse and effectively destroying them (why is this necessary?).  If she can 

tell B that B2 >AC ⊗ (bB| 0B > + aB| 1B >) is the relevant state, he can take qB and put it into his 

Bell State Machine along with a “blank” D-type qubit, qD, and reverse the operations to give qD 

the exact characteristics of qC—he will have created an exact copy of qC! And he will have it 

instantly because it never had to be “sent.” 

 But how can she get the information to B?  The only way is to use a classical 

communication channel to send two bits of information to B.  Those two bits are 11, indicating 

state 3.  Thus, one qubit has been “sent” without mailing it.  To do this two qubits were 

destroyed (qA and the “real” qC , which formed the ebit in A’s lab) and two classical bits were 

sent.  Bennett Rule 4 is satisfied: one ebit plus two classical bits created one qubit.  And the No 

Cloning Restriction is also satisfied since qC was created in B’s lab but its original was destroyed.  

 This is amazingly clever, but there is less here than meets the eye.  When would this ever 

be the best way to send a qubit?  First, it saves time relative to Qubit Express only because the 

classical communication can occur at the speed of light, while a physical spacecraft can not.  But 

what if Qubit Express is simply a quantum communication channel that also operates at light 

speed.  Then no time is saved—A spends less time on the quantum channel but uses all of that 
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saving on the classical channel.  The only advantage appears to be when the quantum channel is 

congested or in some other way (perhaps price) more expensive than the classical channel.   

 Quantum Teleportation does work: it has been used to “send” qubits ozens of miles.  But 

the state of that science is very rudimentary and, of course, without practical value at this stage. 
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Appendix 
Computing with a 3-Qubit Quantum Computer 

 
 As an example of a quantum computer with three color-coded qubits, q, q, and q. The 

qubit states are |ψ > = a0|0 > + a1|1 >, |ψ > = b0|0 > + b1|1 >, and |ψ > = c0|0 > + c1|1 >.  The 

squared amplitudes (probabilities) are normalized to sum to 1, so a0
2 + a1

2 = 1, and b0
2 + b1

2 = 1,  

and c0
2 + c1

2 = 1.   

 

The Setup 

The two-qubit input register is loaded with q and q having  states |ψ > and |ψ >.  The one qubit 

output register is loaded with q, having state |ψ  >.  The basis vectors (kets) defining the 

computational basis of the system are  

  

                                       |0 > =               1             and    |1 >  =             0  
                                                              0                                                         1 
 
so that |ψ > = a0|0 > + a1| 1 > =          |ψ > = b0|0 > + b1|1 > = a0          b0 
                                               a1                                                                                                             b1 
 
                and        |ψ > = c0|0 > + c1| 1 > =       c0 
                                                                                                                           c1 
                              

The tensor product of the two-qubit input register is the 2x2 matrix  

 
             |ψ >⊗|ψ >  =                                                                                |0 >⊗|0 >   |0 >⊗|1 > =       a0b0      a0b1                                  

|1 >⊗|0 >   |1 >⊗|1 >                            a1b0    a1b1   
          
  and the tensor product of the three qubits is the 2x4 matrix 
 
   |ψ >⊗|ψ >⊗|ψ >  =            |0 >⊗|0 >⊗|0 >  |0 >⊗|1 >⊗|0 >  |0 >⊗|0 >⊗|1 >   |0 >⊗|1 >⊗|1 >                                  
                                   

|1 >⊗|0 >⊗|0 >  |1 >⊗|1 >⊗|0 >  |1 >⊗|0 >⊗|1 >   |1 >⊗|1 >⊗|1 >                                                                           
          
       
                                                      =            a0b0c0      a0b1c0   a0b0c1     a0b1c1                                   
                               a1b0c0    a1b1c0   a1b0c1   a1b1c1   
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The basis vectors for the tensor product spaces are the  

for the two-qubit inputs:                     

                     |0 >⊗|0 >  =                             |0 >⊗|1 >  = 1    0         0     1          
           0    0                         0     0 
                                                                                                                                              
                                                                      
                    |1 >⊗|0 >  =                       |1 >⊗|1 >  =                           0    0       0     0 
                                        1    0                                                                                     0     1 
                                                                                                      
for the 3-qubit register 
                                        
         |0 >⊗|0 >|0 >    =                            |0 >⊗|1 >0 > = 1    0    0    0       0     1  0   0       
                         0    0    0    0                  0     0    0   0 
                                                                                                                                        
                             
                                                  
         |0 >⊗|0 >|1 >    =                                |0 >⊗|1 >|1 > =       0    0    1    0      0     0  0   1       
                                    0    0    0    0                                                 0     0    0   0 
 
 
         |1 >⊗|0 >|0 >    =                                |1 >⊗|1 >0 > = 0    0    0    0     0     0  0   0       
                         1    0    0    0                  0     1    0   0 
                                                                                                                                        
                             
                                                  
         |1 >⊗|0 >|1 >    =                                |1 >⊗|1 >|1 > =       0    0    0    0      0     0  0   0       
                                    0    0    1    0                                                 0     0    0   1 
 
 The tensor products contains all of the possible basis states for the two- and three-qubit 

systems.  If you knew the amplitudes you can immediately identify the numbers and do any 

calculations. For example, using only q and q, decimal 4 = binary 10 + 11 = a1b0   +  a1b1.  

Unfortunately, the amplitudes are unknowable until the system has been measured—and 

measurement destroys the information.   
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A Simple Quantum Calculation: Modulo-2 Addition 

 
Step 1: Initialize Qubits 
 
 Before any calculation the input register qubits q and q, and the output qubit q, must be 

refreshed to purge them of any residue from previous calculations.  This is done by setting the 

three qubits to some arbitrary basis state, say “spin -½ or |0 >,  |0 >, and  |0 >.  

 

Step 2: Rotation via Quantum Gates 

 Any quantum calculations require passing the qubits q, and q and q through one or more 

quantum gates, just as we would pass bits through logical gates in a classical computer; the result 

is new states for the three qubits.  But quantum gates are not electrical circuits, they are matrices 

called unitary operators that simultaneously rotate the just-initialized qubits to put them into 

suitable states for the next stages of the calculation. 

 The first quantum gate is an R Gate.  This is a unitary matrix that takes q and q and 

transforms them to superpositions with known amplitudes √½.  Its effect is shown below 

 

                                                                    R GATE          

                                      IN                                                OUT               
 

 

 

 

 

  Thus, the single-qubit state values are transformed to superpositions with amplitude √½ 

and with antistates (180° rotations) for |1 >. 

 The three-quibit register then has the following four tensor product states 

                                         ½(|0 >⊗|0 >⊗|0 >)  

                                            +  ½(|0 >⊗|1 >⊗|0 >)   

                                                   + √½(|1 >⊗|0 >⊗|0 >)   

                                                           + ½(|1 >⊗|1 >⊗|0 >)   

|0 >  √½(|0 > +  |1 >) 

|1 >  √½(|0 >  -  |1 >) 

|0 >  √½(|0 > +  |1 >) 

|1 >  √½(|0 >  -  |1 >) 
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Step 3: Entanglement  

 The superposition just derived consists of tensor products of independent quantum states: 

each qubit’s state is independent of the states of  the other qubits. As explained in the text, 

entanglement exists when some of the states are orthogonal, meaning that they are perfectly 

correlated.  For example, if |0 >⊗|1 > = 0 and |1 >⊗|0 > then the tensor product |ψ >⊗|ψ >  is 

 
             |ψ >⊗|ψ >  =                                                                                 |0 >⊗|0 >        0                                   

0    0         |1 >⊗|1 >                                       0              
          
Thus, the only possible product states are perfectly correlated: either both qubits are 0 or both  

are 1.  The states are said to be maximally entangled.                                                     

 Maximal entanglement of the three qubit states is done via a D Gate, which is a unitary 

matrix that does the following operation 

                                                                    D  GATE          

                                      IN                                                OUT               
 

 

 

 

 

 

 

 

 

 The D-Gate takes each of the eight (= 23) possible register states and performs the 

following: if the input state state of q is  |0 > then the output state of q is  the mod-2 sum of the 

input states of q and q; if the input state state of q is  |1 > then the output state of q is 1 plus the 

mod-2 sum of the input states of q and q (recall that 1 + 1 = 0). 

 But only four of those eight output states are relevant—those in which q’s input state was  

 |0 >. The four output states with |1 > as qs’s initial state can’t occur because q was initialized to 

|0 >.  So after both the D Gate and the R Gate the state of the register is 

  

|0 >⊗ |0 >⊗ |0 >  |0 >⊗ |0 >⊗ |0 > 

|0 >⊗ |0 >⊗ |1 >  |0 >⊗ |0 >⊗ |1 > 

|0 >⊗ |1 >⊗ |0 >  |0 >⊗ |1 >⊗ |1 > 

|0 >⊗ |1 >⊗ |1 >  |0 >⊗ |1 >⊗ |0 > 

|1 >⊗ |0 >⊗ |0 >  |1 >⊗ |0 >⊗ |1 > 

|1 >⊗ |0 >⊗ |1 >  |1 >⊗ |0 >⊗ |0 > 

|1 >⊗ |1 >⊗ |0 >  |1 >⊗ |1 >⊗ |0 > 

|1 >⊗ |1 >⊗ |1 >  |1 >⊗ |1 >⊗ |1 > 
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                                       ½(|0 >⊗|0 >⊗|0 >)  

                                            + ½(|0 >⊗|1 >⊗|1 >)   

                                                      + ½(|1 >⊗|0 >⊗|1 >)   

                                                              + ½(|1 >⊗|1 >⊗|0 >)   

 

 In each of these four tensor product states q contains the modulo-2 sum of q and q. The 

four states are said to be entangled mod-2, meaning that the third qubit must always be the mod-2 

sum of the other two qubits.          

  

Step 4:  Read the result 

 The calculation has computed the mod-2 sum of every possible combination of q and q.  

The combinations all exist simultaneously, each having probability ¼ of being observed when 

the register is measured. Suppose you read the register and find 0 >, then you know that the other 

two qubits are either 1 and 1 or  0 and 0; if you get 1 >, then the other qubits are either 1 and 0 or  

0 and 1.  It turns out that 50 percent of the time a measurement would yield 0 > and 50 percent of 

those times it would also indicate 1 and 1.    

 This is a “calculation,” but it is a very trivial calculation because you knew the answer 

without using a computer. It illustrates the steps in a quantum calculation without indicating the 

power of a quantum computer.  Perhaps more useful would be the answer to the question “if a 

specific string of 0’s and q’s is added mod-2 to another specific string of 0’s and 1’s, what would 

be the sum?”  That answer can be derived by multiple-qubit quantum computers that iterate (use 

repeated trials) to get an answer.  It has been shown that the time to do any binary arithmetic 

calculation is a low-order polynomial function of the number of binary digits; with a classical 

computer the time increases exponentially with the number of iterations.  

 My apologies to Richard Feynman! 
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