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Background Concepts 
 
Quantum Systems 
 

A quantum system is any piece of the quantum world considered in isolation.  The 

simplest quantum system is a one-particle system, for example an electron or a photon. 

The underlying assumption that this single particle acts in isolation is, of course, not 

“realistic”:  the electron is in a cloud of other electrons, neutrons, protons and other 

particles.  To paraphrase John Donne, “No electron is an island, entire unto itself.”  But 

the assumption is useful because it allows one to describe the simplest level of quantum 

mechanics. 

The next most tractable quantum system is a two-particle system, as when a 

photon decays into an electron and an antielectron (positron).  Again, the assumption of 

isolation is not realistic, but it is useful.  Even this simple system can be complicated 

because in two particles can be entangled, a characteristic described in Part 1 that will be 

more fully developed later. 

 

Dirac Notation and Linear Algebra of Quantum States 

A quantum state is described by one or more numbers representing the values of 

the characteristics of the state.  Suppose that there are n characteristics describing a 

quantum state, call them  s1, s2,…,sn.  Those state characteristics might be positions in 

space and time: t for time, z for position in the north-south direction, x for position in the 

east-west direction, and y for position in the in-out direction (pointing toward or away 

from the reader). In that case the list of characteristics is z, x, y with particular values for 

each; thus, five units north, 2 units west, and 7 units out would be described as 5, -2, 7, 

15. These can be placed in a vector for mathematical manipulations; that vector would be 

[ 5  -2  7  15].  If the list of state characteristics is horizontal, as in  [x y z], it is a row 

vector; if the list is vertical it is a column vector.  

The notation used in quantum theory was developed by Paul Dirac and is called 

Dirac Notation, or, more casually, bra-ket notation ( a pun on “bracket”).  A row vector, 
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called a bra, is denoted x, y, z, t ; a column vector, called a ket, is denoted by x, y, z, t .  

Bras and kets are duals because they contain precisely the same information, the only 

difference being whether the information is listed horizontally or vertically.  Because 

they are duals, the state of a quantum system can be described by either, but it is common 

for quantum states to be described as kets unless a mathematical operation requires the 

orientation to be considered. Following that convention, we will use kets to describe 

quantum states.  

Thus, the notation below is used for bras and kets. 

 

        BRA                                                                       KET 
                                                                                                                        

        x, y, z  =  [ x y z ]                                                  x, y, z    =    x             

                                                                                                                   y 
                                                                                                                   z 
                                                                                                                     

  
 

 The dimensions of a vector are expressed as the number of rows times the 

number of columns: Nx1 for a column vector (ket) with N elements, and 1xN for a row 

vector (bra) with N columns.  The bra and ket above are 1x3 and 3x1 vectors. 

It is clumsy to have to write out the list of state characteristics each time the 

vector is referred to, so a more compact notation is used.  The list of variables in the 

quantum state might be referred to by a symbol, often a Greek letter like ψ (spelled “psi,” 

pronounced “sigh”).  So, for example, we might state that “psi is defined as the list of 

quantum states “x y z ”, written as the ket ψ  = [ x y z ].  In this case we can refer to the 

vector as a ket ψ  (a column vector) or as a bra ψ   (a row vector).  Isn’t that easier? 

Tensor mathematics is the foundation of quantum analysis.  It is a difficult 

subject—Einstein had trouble with it—but fortunately we won’t have to immerse 

ourselves in it.  However, two simple vector operations from tensor mathematics will be 

used on occasions.  Suppose we have two quantum state vectors ψ1  = [x1 y1 z1 ] and       

ψ2  = [x2 y2 z2 ] (both expressed as kets, or column vectors, but written here as rows to 

conserve space).  The dot product of a bra and a ket, also called the inner product, is       
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< ψ1 | ψ2 >  (bra times ket); it is calculated as < ψ1 | ψ2 > = x1x2 + y1y2
 + z1z2.1  The dot 

product is simply the sum of the cross products of the state characteristics. If the dot 

product is formed by a vector with itself, as in < ψ1|ψ1 >; it is the sum of squares of the 

state variables. 

Another operation is the tensor product.  This is the product of two kets, denoted 

officially as | ψ1 >⊗| ψ2 > but often written as | ψ1 >| ψ2 > or as | ψ1ψ2 >. The tensor 

product of two vectors is another vector formed by multiplying the first state value (x1) in 

the first vector by the entire second vector ψ2, then the second state in the first vector (y1) 

is multiplied by ψ2, and so on.  Thus, the tensor product of two 3x1 kets is a 3x3 matrix 

listing all of the possible products of the state variables. 

                                                                                                  

x1| ψ2>                                                                                                             x1x2   x1y2   x1z2                                      

| ψ1  >⊗|ψ2 >  =             y1| ψ2>                                                                =      y1y2     y1z2     y1x2                                        

z1| ψ2>                                                                                     z1x2    z1y2   z1z2 

                                               z                                                                                                                                                                                

 The purpose of a tensor product is to list out al the interactions between state 

characteristics.  It also represents the combination of two quantum states, so if | φ > is the 

ket for one quantum state and | η > is the ket for another quantum state, the tensor 

produce | φ >⊗|η > describes a combination of the states. This is called the Product Rule 

for Composite States; we will use it often. 

 A more detailed discussion of Linear Algebra—the mathematical foundation of 

Tensor Math—is in the Technical Appendix to this series. 

  

Superpositions of Quantum States 

Clearly there can be many states of a quantum system, perhaps an infinite 

number, each depending on particular values for the state characteristics.  For example, 

our spatial and time measurements are all on the real line (so if t0= 1 and t1=2, any 

number between them (say, t = 1.3478254) is also a point in time.  Thus, there are an 

infinite number of possible values on the time axis, on the x-axis, and so on. But not all 
                                                
1 In linear algebra—a branch of mathematics closely related to tensor math—the dot product is called the 
inner product.  
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quantum states are continuous—some are quantized.  For example, the radius of an 

electron’s orbit around a nucleus can occur only in discrete values, and the energy of an 

electron can change only in discrete amounts. And—mystery of mysteries—even time is 

quantized in units called Planck time.  These units are so small that we never see them as 

discrete, just as we don’t see a movie as a series of discrete pictures. 

Suppose that we allow only 3 basis states with kets | ψ1 >,  | ψ2 >, | ψ3 >.  A 

superposition of those 3 states is | ψ > = a1| ψ1 > + a2| ψ2 > + a3| ψ3 >.  The a’s are called 

amplitudes. The basis vectors for the quantum system are the following 3x1 vectors: 

   

                              1                                           0             0 
 |ψ1 > =             |ψ2 > =        | ψ3 > =          0               1                       0 

            0                                        0             1                               
 

These are called unit vectors because they have a 1 in one spot and zeros 

elsewhere. Unit vectors are important because they establish the axes in a vector space (in 

this case, a 3-dimensional vector space).  Such a vector space is shown below as the 

rectangular axes ψ1, ψ2, ψ3 of a 3-dimensional Cartesian space. 

 

 

 

 

 

 

 

 

                                                        

 

                       Three Dimensional Vector Space 

                With Quantum States and Superposition 

 

       + z 

   - z 

+ y 

- y 

  a3 

  a2 
  a1 

  |ψ > 

+ x - x 
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The three vectors a1, a2, and a3  show the magnitudes (amplitudes) in the z, x, and 

y directions. The heavier red arrow is the net vector for the particular quantum state        

|ψ > = (a1, a2, a3). Thus, the state | ψ > is the 3x1 vector below: 

  

                                  a1                           
| ψ > = a1| ψ1 > + a2| ψ2 > + a3| ψ3 >  =               a2 

                                                                                         a3 
               

 

The values a1, a2, a3 measure the amplitudes of the states to which they are 

attached.  From Born’s Rule (see Part 1) we know that the squared absolute value of an 

amplitude is the probability of that state occurring if the system is measured, that is |a3|2  

is the probability that if | ψ > is measured, ψ3 will happen and the other states won’t 

happen.  We know that probabilities must add to 1, so |a1|2  + |a2|2  + |a3|2  =1.  

We will discuss the spin of a particle later, but spin provides an easy example.  

Spin can be up or down, denoted by ↑ and ↓, respectively. Suppose that spin along a 

particular axis is the only state characteristic. Then the state | ψ > has one state 

characteristic with two possible values, ↑ and ↓.  Suppose also that there are equal 

probabilities for each spin state, so |a1|  =  |a2| = √½ are the amplitudes and |a1|2  = |a2|2 = 

½ are the probabilities.  Then the superposition of spin states is |ψ > =  √½(| ↑ > +  | ↓ >). 

We will often refer to a superposition as a probability wave because any superposition of 

quantum states is a superposition of the Scroedinger probability waves for those states.  

The superposition of basis states is itself a quantum state and it must obey the 

rules of quantum mechanics.  In quantum physics all basis states occur simultaneously 

while in a superposition.  But when a measurement is made of the quantum state, only 

one basis state will occur.  Repeated measurements will show that the ith basis state ψi  

results the proportion |ai|2 of the time.   

Schroedinger’s Cat provides a popular example (see Part 1): the cat has two 

states, |alive> and | dead >, with probability |a|2 of |alive> and probability (1-|a|2) of   

|dead >.  The superposition is, then, |ψ > = a| alive > +  (1- |a|2)| dead >, where ψ is the 

cat’s unknown quantum state.  The superposition says that while the cat’s box is closed 

we can think of the cat as both alive and dead, each with its associated probability: hence 
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prior to a measurement of the quantum state, all possibilities coexist. When the box is 

opened and we measure the cat’s state, the superposition disappears and only one state—

“dead” or “alive”—exists; all other possible states vanish; the probability wave 

describing the cat’s state “collapses” to the observed state. 

 The Schroedinger’s Cat parable has two basic interpretations. Philosophical 

Realists (Einstein et al.) say that the cat’s state was established before the box was 

opened—the cat was “really” either alive or dead—and we only see the reality when we 

open the box. The Copenhagen Interpretation (Bohr et al.) is that the cat is really both 

dead and alive; when we open the box we force nature to make a decision.  So the 

measurement caused the result!   

Superpositions also underlie the interpretation of the interferometer “experiments” 

in Part 1.  These showed that when a photon can take one of two paths it takes both paths 

and creates destructive and constructive interference unless a measurement of the path 

taken is made, at which time the interference disappears and the photon behaves as if it 

could only have taken the detected path. 

To summarize, if a number of basis states can occur, a superposition of those 

states will occur until a measurement is made.  The superposition is obtained by 

multiplying each basis state vector by its amplitude, then adding the results together.  The 

squared amplitudes are interpreted as the probability of occurrence of each basis state.  

Note that the amplitudes can be either a real or a complex numbers; for example, a = √½  

is a real number amplitude with probability |a|2 = ½; but  |a| = i√½ is a complex 

amplitude (i = √-1) though it has the same probability of ½.  Thus, a complex amplitude  

still implies real probabilities. The use of complex numbers will be downplayed here, but 

what it really means is that the superposition is wavelike.  

As noted above, a superposition is a Schroedinger Probability Wave (simply 

probability wave) combining the probability waves of the individual basis states.  Before 

a measurement is made all possible states will simultaneously exist, but if a measurement 

is taken only one state will be seen. The probability wave is said to collapse to the single 

observed state.  
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Example: Polarized Sunglasses 

A simple example of quantum superposition is the effect of polarized sunglasses 

on light received by the eye.  Unfiltered light has rays oriented in all directions: some 

arrive vertically polarized (north-south), some arrive horizontally polarized (east-west), 

others arrive polarized NNE-SSW, and so on; all polarities arrive.  However, when we 

see reflected light—like the sun reflecting off of water—the polarity is mostly in one 

direction (horizontal) because a reflective surface tends to absorb vertically polarized 

light.  We see the abundance of horizontal polarity as glare. The role of polarized 

sunglasses is to reduce the glare by redistributing the light’s polarity toward the vertical, 

so that we get both vertical and horizontal polarities.   

Light received by the eye can be treated as a superposition of two basis states: 

vertical polarity, ket | V >, and horizontal polarity, ket | H >.  The superposition is             

| φ > = cos(θ)| V > + sin(θ)| H > with θ as the angle of polarization from the vertical and            

φ  as the angle of final polarity.  

Suppose that the glare has a polarity of 75 degrees from vertical; that is, it arrives 

at an angle θ = 75° from the vertical (15° from the horizontal): almost but not quite 

horizontal.  In that case, | ψ > .26| V > + .96| H > is the superposition of the light 

polarities. The proportion of light received that is vertically polarized is .262 = .068 or 6.8 

percent, and the remaining 93.2 percent of light is horizontally polarized.  That hurts! 

Suppose that you go to iEYE, your glasses store, to get sunglasses polarized at 

40° from vertical. The mathematics tells us that now 58 percent of light is vertically 

polarized and 42 percent is horizontally polarized.  The eye is no longer overloaded by 

one polarization.  Isn’t that much more comfortable? 

 

System Measurement 

 The interferometer experiments in Part 1 revealed that the mere observation (i.e., 

measurement) of a quantum system determines the result. Note the language: 

measurement does not reveal the result, it determines the result. No longer are we in the 

classical world where an experiment is started and its results crank out independent of the 

observer’s actions.  Now the observer is part of the quantum system. To refresh our 

memory, we’ll review some of the findings in Part 1. 
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First, if there is no measurement on a quantum system, all possible basis states 

occur simultaneously.  Recall the “Two-Path Experiment.” A photon can follow either 

the Upper Path or the Lower Path.  The probability that it will take each path is ½, so if a 

photon stream (light beam) is emitted, half of the photons take one path and half take the 

other path.  We don’t know which path an individual photon takes, but we know that, on 

average, half of the photons take each path. We found in the Two-Path Experiment that a 

photon is both a particle and a wave: a particle because it causes one detector to click, a 

wave because it never arrives at the other detector due to destructive interference. If we 

don’t measure which path a photon has taken, the photon is a wave taking both paths.  

That is the only way we can explain the constructive and destructive interference.  

Our “Which-Path Experiment” revealed something even stranger.  If we detect the 

path a photon is on after it has already started on a path—even without disturbing it in 

any way—it always behaves as a particle.  It is as if the photon, knowing that it has been 

caught on one path, can rewrite its history and never have been on the other path. The 

observer is part of the quantum system, not independent of the quantum world—by 

observing the world we change the world!.  

Our “Delayed-Choice Which-Path Experiment” revealed something stranger yet.  

Even after the photon has done all its work and is on its way direct to the final detectors, 

the observer’s decision to measure the photon’s path will affect the results; the results of 

the Which-Path Experiment occur even when detection is activated after the photon has 

made all of its decisions. It is as if the photon stops, goes back to the starting point, then it  

goes onto the path that was detected. 

The moral is that for an unmeasured system, all possible states occur 

simultaneously, with the probability of each state measured by (the square of) that state’s 

amplitude. For the measured system, only the measured state exists and all other states 

vanish even though we “know” that they should still exist.  
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                                    Basic Rules of Quantum Systems 
 
  •    A basis state of a quantum system describes the quantum state that exists  
        with a specific set of values for the state characteristics; a basis state is  
         indicated by a ket | si > where si is the ith basis state 
 
  •    A superposition of basis states—defined as the sum of basis states, each 
        multiplied by its amplitude—is a quantum state that acts as a wave. A  
        superposition of n states is | ψ > = a1| s1 > + a2| s2 > + . . . + an| sn > where 
        ai is the amplitude of the ith basis state and | ai|2 is its probability. 
 
  •    If no measurement of a system’s quantum state is made, all basis states of  
        the quantum system occur simultaneously. 
 
  •     If a system’s quantum state is measured only one quantum state exists (the 
         one measured) and all other quantum states vanish. 
 
  •      Repeated experiments on a quantum system—with measurement—will  
          each result in a different basis state being observed.  The frequency of  
          those basis states is the probability of occurrence. 
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Quantum Spin 
 

 
Spin Basics 

Wolfgang Paulii was the first to postulate that a particle had a property he named  

spin.  This property was required to explain the number of electrons allowed in each shell 

of an atom.  Only later was spin confirmed by experiments.  We all understand the 

concept of spin but a specific metaphor might solidify this  understanding. 

Our visible universe is one of three spatial dimensions: each point in space is 

represented by a position on the z-axis, a position on the x-axis, and a position on the y-

axis.  Consider a person on a geosynchronous satellite at a fixed position above New 

York City.  He might define the z-axis as running through the Earth’s North and South 

poles, the x-axis as also running through the earth’s center but perpendicular to the z-axis 

in the East-West direction, and the y-axis as also running through the earth’s center but in 

a direction toward him or a way from him—in the “In-Out” direction.  That is his spatial 

orientation, and every spot in the universe can be plotted as a point (z, x, y) in that space.  

Now suppose that our astronaut is moving away from the Earth as he drifts to the 

southwest in his initial spatial frame.  He will see his southward motion as the planet 

spinning in a northerly motion along the z-axis, his westward motion as Earth spinning 

easterly along the x-axis, and his backward motion as Earth moving away along the y-

axis. The axis of Earth’s perceived spin will be determined by the astronaut’s motion.  

For example, he might view Earth as spinning northeasterly at an angle of 30 degrees.  

Earth’s spin is in the eye of the beholder! 

Of course, Earth actually does spin, and its spin creates an electrical current that, 

in turn, creates a magnetic field.  The electrical current arises from the outer core of 

molten metal flowing relative to the spinning surface.  This makes Earth a magnetic 

dipole with a magnetic field running from its magnetic South Pole to its magnetic North 

Pole. 

Just as the astronaut sees Earth as spinning in a northeasterly direction, a physicist 

sees a particle as spinning in a z, x, y coordinate system.  And just as the astronaut knows 

that there is a magnetic field around Earth due to its spin, so a physicist knows that the 

particle’s spin creates a magnetic field around a particle.  The particle, like the Earth, is a 
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magnetic dipole with lines of magnetic force running between a south pole and a north 

pole along the spin axis.  

The spin-induced magnetic properties of a particle are an important characteristic. 

At the level of the physicist in the lab, it allows external magnetic fields to be used to 

direct particles in desired directions by passing the particles through properly prepared 

magnets.  It is also what allows particle accelerators to determine what type of particle is 

emitted by particle collisions.  For example, an electron and a positron have opposite 

spins and, therefore, opposite magnetic fields and opposite polarities. If a photon decays 

into an electron and a positron while passing through a magnetic field, the electron veers 

one way and the positron veers the other way. This is how the positron—a particle 

predicted by Paul Dirac in the 1930s—was discovered. 

Before delving into spin itself, it’s worth clarifying that particles don’t actually 

spin.  In the early days of spin theory (just after discovery of a particle’s magnetic field 

but before politicians coopted the term) it was thought that particles did spin and that this 

accounted for their magnetic properties.  We now know that they don’t spin because 

particles are really waves—probability waves.  But their magnetic properties make it 

seem as if they do spin.  So “spin” has been permanently attached to the list of particle 

characteristics. 

 

Spin State Characteristics 

Spin is the angular momentum of the particle around a specific axis.  With three 

spatial axes, the total spin of the particle will be some combination of the particle’s 

angular momentum around each axis.  Thus, there is spin up or down along the z-axis 

(Sz), spin right or left along the x-axis (Sx), and spin in or out along the y-axis (Sy).  Like 

all quantum characteristics, spin is a quantized characteristic measured in discrete units: 

spin can occur only in integral values of those units. The units for spin are h/2π (called 

the reduced Planck Constant).  These three spins are conjugate variables subject to the 

Uncertainty Principle: if one spin (say Sz) is measured precisely, the other two spins 

cannot be measured.  Thus, discussions of spin measurements typically focus on one 

spin—the z-axis spin, Sz..  
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Spin directions can be either positive or negative, and spin can only take integral 

and half-integral values: possible spin numbers are 0, ±½, ±1½, ±2, ±2½, and so on.  This 

last attribute is extremely important and we will discuss it a bit later. 

 Spin around the x-axis (z-spin, or “vertical spin”) is classified as “up” or “down,” 

spin around the z-axis (x-spin or “horizontal spin”) is “right” or left,” and spin around 

the y-axis is “in” or “out.” The kets for these spin basis states are given in the table 

below. 

 

                                                  Spin Basis States 
                          Axis                 Kets                  Description 
              
 
 
 

 

Any spin basis state can be derived as a superposition of other basis state.  The 

table below shows some basis state-superposition equivalences assuming amplitude √½, 

that is, probability ½.         

                                     

                                              Spin  Superpositions 
                                   Axis                Superposition State 
 
 
 

 

 

                                      
                                                     Note: y-axis spin is a complex number 

 

Thus, both UP and DOWN spins are superpositions of a right spin and left spin, 

and RIGHT and LEFT spins are each superpositions of UP and DOWN spins.  These 

characteristics are important in problems requiring spin mathematics, but will not detain 

us now.   

z | ↑  >  or  | ↓  > “UP”  or “DOWN” 
x | → >  or  | ← > “RIGHT” or “LEFT” 
y | in  >  or  | out > “IN” or “OUT” 

z  | ↑  >  =  √½(| → >  +  √½| ← >) 
 | ↓  >  =  √½(| ← >  –  √½| → >) 

x  | → >  = √½(| ↑   >  +  √½| ↓  >) 
 | ← >  = √½(| ↓   >  –  √½| ↑  >) 

y  |  in >  = √½(| ↑  >   +  √½| ↓  >) 
 | out>  = √½(| ↓  >   –  √½| ↑  >) 
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As noted above, spin is around a directional axis that may or may not be along a 

single axis.  For ease of exposition we focus on z-axis spin and x-axis spin, ignoring the 

complex-valued y-axis spin. 

Consider the figure below where the x and z axes are rotated clockwise around the 

y-axis at an angle of +α° from the vertical to form a new x-axis and a new z-axis. The 

new z-axis represents the direction of an UP or DOWN spin, while the new x-axis 

represents the direction of a RIGHT or LEFT spin.  There are some interesting results 

arising from different rotation angles. 

 
 
 
                                                                                              +z 
                                            -X                                                                                +Z 
 
 
 
                                                                                                α° 
  
 
 
                                                -x                                                                                       +x 
 
 
 
 
 
 
 
 
                                                 - Z                                -z                                                 +X 
 
                                                                                          

 

In the next section we will discuss the spin characteristics of specific types of 

particles.  There we will see that particles with ±½ spin are of great importance in our 

everyday lives: they are the building blocks of all matter.  So it is worth seeing how spin 

±½ particles are related to the angle of rotation, α.  

Spin—like all quantum characteristics—exists in a superposition of all spin states; 

it is, therefore, driven by probabilities.  The squared amplitude of each spin state 

describes the probability of that state occurring. That probability, it turns out, depends on 

the angle of rotation.  This is shown in the table below.  
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                                    Angle of Rotation and Spin ±½ Probability 
                                                  α°           | spin >        P(+½)         P(–½) 
                                                                        
 
. 

 

 

 

 

 

 

If there is no axis rotation (the spin is UP or DOWN along the original z-axis), the 

spin must be positive; if there is a 180° rotation (the original +z and –z axes are reversed), 

the spin must be negative.  But as the rotation angle increases from 000° to 360° the 

probability of a positive spin decreases and the probability of a negative spin increases. 

And as the angle of rotation continues from 180° back up to 360° the probability of an 

UP spin rises. Thus, a particle with ½ spin can take on any spin direction (+ or -)  as the 

angle of axis rotation goes from 000° to 360°.  (Note, for later use, the strange minus sign 

before the ket at 360°.) 

For everyday objects a 360° axis rotation returns the object to its original position: 

point a pencil straight up and rotate it clockwise 360°; it returns to its original state.  This 

is true of some particles as well—bosons, the force-carrying particles.  But rotation of 

some subatomic particles—fermions, the particles of matter—confounds our everyday 

understanding because a 720° rotation is required to to return a fermion to its original 

spin state.   

A hint of this is in the table above: when a full clockwise axis rotation is 

completed the spin state ends up at –|↑  > (the antistate of  |↑  >) rather than |↑  >: the ket 

for spin direction is positive until 360° is reached—one full rotation—after which the ket 

is preceded by a negative sign.  The original positive ket is not restored until two full 

rotations (720°), when the cycle begins again.  This double-rotation cycle is yet another 

way that quantum mechanics confuses and confounds. 

000°    | ↑   > 1.00 0.00 
045°    | ➚  > 0.85 0.15 
090°    | → >  0.50 0.50 
135°      | ➘  > 0.15 0.85 
180°      | ↓   > 0.00 1.00 

    225°      | j  > 0.15 0.85 
    270°      | � > 0.50 0.50 
    315°      | '  > 0.85 0.15 
    360°    - | ↑   > 1.00 0.00 
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The table below shows the spin state of fermions for two full rotations (720°). All 

states in the second rotation are antistates of the first rotation states. Thus a 585° rotation 

has state – | '  >, not the | '  > associated with a 270° rotation.  

 

                                  Spin-½ Particle States over 720°  Rotatin 

                           α°             |Spin >            α              |Spin 

 

 

 

 

 

 

 

 

 What does a negative ket represent?  Consider the superposition of states at 90°  

rotation and at a 450° rotation, that is | ➙> and –| ➙>; with equal probabilities, the 

superposition is | ψ > = √½(| ➙> – | ➙> ) = 0:  for a spin-½ particle a second axis 

rotation leads to nullification of the probability wave: the superposition has destructive 

interference and can not exist.    

At a deeper level, the negative ket reflects a property called spin that affects the 

probability wave function when there is a “spatial inversion.”  A spatial inversion occurs 

when the spatial axes of the system (x, y, z) “flip” to a new system (x’, y’, z’) with x’= -x, 

y’ = -y, and z’ = -z, as below 

                       +z             +y                                                         z’ = -z      y’ = -y 

 

 

-x                                           +x                    x’ = +x                                               x’ = -x 

 

 

      -y              -z                                                       y’ = +y       z’ = +z 

000°     | ↑  > 405°    – | ➚ > 
045°     | ➚ > 450°    – | ➙>  
090°     | ➙>  395°    – | ➘ > 
135°     | ➘ > 540°    – | ↓  > 
180°     | ↓  > 585°    – | '  > 
225°     | '  > 630°    – | � > 
270°     | � > 675°    – | j  > 
315°     | j  > 720°       | ↑   > 
360°  – | ↑   >   
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The effect of a spatial inversion is to transform a state to its antistate, thereby 

inverting its probability wave, as shown below.  The top wave function is an original 

probability wave that has the same form for both positive and negative values of the 

distance along the x-axis.  The second wave function represents a positive parity 

transformation leaving the function unchanged. A positive parity transformation is 

denoted by a positive (or unsigned) ket. The third wave—a negative parity 

transformation—is quite different: the +x side of the wave is inverted from its original 

(top) form.  The shift from a negative to a positive side of an axis is a spatial inversion 

represented by a negative ket.  

 

                            
                                   Parity Transformations 

  

The inversion might not be along a spatial axis.  In the case of axis rotations, it is 

in the angle of rotation.  In fermions, the first 360° rotation of α leaves the wave function 

unchanged.  But when α hits that 360th degree, an inversion occurs and during the second 

full rotation the state flips to its antistate, turning (say) | ➚ > into –| ➚ > which is simply    

| ' >.   
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Spin Complementarity 

 Part 1 reviewed the long running Complementarity Debate between Nils Bohr and 

Albert Einstein. Heisenberg’s Uncertainty Principle said that when state characteristics 

are conjugate variables (i.e., are complementary), precision in measurement of one 

characteristic (momentum) implies imprecise measurement of the conjugate characteristic 

(velocity).  Einstein rejected the concept of complementarity, believing that physics is 

deterministic so all variables have characteristics that can be precisely measured.  Bohr 

won the complementarity debate and his view has become widely held.  

 The Uncertainty Principle applies to spin as well as other state characteristics. The 

more precisely spin along one axis is measured, the less precisely it can be measured 

along the other two axes.  If spin along the z-axis, x-axis, and y-axis is denoted Sz, Sx, 

and Sy, then precise measurement of Sz means that Sx, and Sy can’t be measured. If one 

spin is measured a precise answer is given, but if you then try to spin on another axis,  

spin on the first axis reverts to a superposition. 

In the next section we address the properties of quantum particles.  Of particular 

importance is the distinction between fermions and bosons.  That distinction, we will see, 

turns on the different rotational spin properties of the two particles. 
 
                                              Spin Properties 

 
    •   A particle’s spin is a quantum state representing the angular momentum of its  
         rotation around its spin axis.    
 
    •  Spin determines the magnetic dipole moment of a particle and, therefore, its  
        motion when affected by an external magnetic field.   
 
    •  The spin state of spin-½ particles (fermions) is random.  P(spin = +½) falls  
         from 1 to 0 as the angle of rotation (α) of the z-axis from vertical increases  
         from 0° to 180°, then it rises from 0 to 1 as α rises from 180° to  360°. 
  
     •  For bosons—force-carrying particles with spin-0—a 360° rotation returns 
         the spin quantum state to its original state, but for fermions—spin-½ matter  
         particles two full rotations (720°) is required to return to the original state;  
         during the second rotation the spin state is negative due to spatial inversion.  
 
     •  This strange property of fermions (spatial inversion) is central to the Pauli  
         Exclusion Principle outlined in the next section. 
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Quantum Particles: Bosons and Fermions 

 
Macroscopic things are each unique because they are complex: no two snowflakes 

are identical; no person’s fingerprints are identical to another’s.  But elementary quantum 

particles of a kind are all exactly alike: one electron is identical to every other electron, 

and so on. But though they are the same they are not identical particles in the sense of 

quantum theory. 

 

Identical Particles 

 In everyday language identical particles would have the same physical properties 

of mass, spin, and electric charge.  In this sense all electrons are “identical”: they all have 

spin-½, mass of  0.511 MeV/c2  (mass is in units of mega-electron-volts divided by the 

squared speed of light) and charge -1.  But two “identical” electrons can be in different 

quantum states (for example, up or down spin) so in a quantum sense they are not 

identical. 

The issue of identical particles in quantum physics is whether two “identical” 

particles can be swapped (or exchanged) without affecting the system’s quantum state, 

i.e., the wave function.  If they can be swapped without affecting the quantum state, they 

are said to have symmetric states; if a swap changes the quantum states, they are in 

antisymmetric states. 

Suppose that there are two particles, A and B, at respective positions x1 and x2 on 

the x-axis. The electrons have states | ψA > and | ψB >. Suppose also that two joint states 

are formed by combining those ⊗particles:  | ψA >⊗|ψB > is the state when A is at x1 and 

B is at x2, and | ψB >⊗|ψA > is the state when A is at x2 and B is at x1; their positions are 

reversed. These are called product states because a combination of two quantum states is 

the tensor product of the states.  

Are these states identical?  As noted above, identical particles have the property 

that if they are swapped with each other, the quantum state is unchanged, meaning that 

the two-particle system’s wave function is unaffected: two particles are identical if  

 | ψB >⊗|ψA > = | ψA>⊗|ψB >; superposition  | ψ > = √½(| ψA >⊗|ψB >  +  |ψB >⊗|ψA  >) 

shows that when the particles are identical | ψ > = 2√½(| ψA >⊗ψB >) = 2√½| ψB>⊗ψA >: 
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the wave functions are identical.2  Thus, both product states are the same if the two 

particles are interchanged with no change in the probability wave function.  

Now let’s look at the second possibility—the two product states are not the same, 

that is, | ψA >⊗|ψB > ≠  | ψB >⊗|ψA >.  The states are antisymmetric so |ψA >⊗|ψB > =               

– | ψB >|ψA >; now | ψ > =  1/√2(| ψAψB > -  |ψAψB  >) = 0.  The effect of the 

antisymmetry is to invert the wave function and create destructive interference.  The 

destructive interference means that the two particles can not share the same quantum state. 

Another way of describing antisymmetry is that the particles avoid each other so that they 

don’t come together and get cancelled out. 

 

The Spin Statistics Theorem 

 Why does this matter?  The reason is that it distinguishes two fundamental types 

of matter: fermions and bosons.  We saw earlier that fermions have half-integer spins, i.e., 

spin of ½, 1½ , 2½, etc.; all known fermions are spin-½ particles.  Bosons have integer 

spins, i.e., 0, 1, 2, etc.; all known bosons have spin-1.3  But now we have another 

difference: bosons are identical particles and, as such, they can share the same quantum 

state and can be packed closely together; bosons are “gregarious.”  Fermions, on the other 

hand, can never share the same quantum state and, as such, they avoid each other; they 

are “antisocial.”  Fermions of the same type (say, electrons) develop this avoidance 

mechanism by having the same electric charge: all electrons have a charge of -1 so 

electrons repel each other; all protons have a charge of +1 and protons repel each other.  

 This is summarized in the spin statistics theorem: collections of like-particles in 

symmetric states (spin-0 or spin-1 bosons) leave the system’s probability wave function 

unchanged, while particles in antisymmetric states (spin-½ fermions) invert the wave 

function. This is a fundamental distinction in the Standard Model of Elementary Particles. 

 

The Standard Model of Elementary Particles 

The table below shows the sixteen elementary particles in the Standard Model.  A 

seventeenth elementary particle might now be added:  the Higgs boson—long predicted 

                                                
2 Multiplication by a constant like √2 makes no difference to the wave function.  
3 The recently discovered Higgs boson has spin-0. 
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but only very recently discovered—plays an essential role in determining a particle’s 

mass and, therefore, gravity.  Each particle has a triplet of characteristics—mass, spin, 

and charge—that make that particle unique (but not necessarily identical.) 

 

 

                                   The Standard Model 
 

The properties of the elementary particles of matter that make up you, me, trees, 

dogs, and stone, were studied by Enrico Fermi and are called fermions. All fermions are 

spin-½ particles, are antisymmetric and, therefore, are antisocial. There are twelve 

fermions: six quarks that make up the proton and neutrons in the atomic nucleus, and six 

leptons that define all other fermions.  
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Quarks are the lighter (less massive) fermions; the electron, the muon, and the tau 

are the heavier fermions.  A proton is made of two up quarks and one down quark (each 

of a different color) giving the proton a +1 charge. A neutron consists of two down 

quarks and one up quark (again, each of a different color) with a zero charge. Electrons 

are very stable with an extremely long half-life, but muons and taus are very unstable, 

with an almost instantaneous half-life.  For each of these heavier leptons there is a 

neutrino form with small mass and zero charge.  Neutrinos interact with other particles so 

rarely as to never be seen in the act.  

Bosons are force-carrying particles.  The photon carries the electromagnetic force 

that makes up electromagnetic radiation ranging from very long wavelength radio waves, 

through visible wavelengths of light, on up to extremely short wavelength ultraviolet.  

radiation.  The gluon carries the strong force that binds the proton to the neutron in an 

atom’s nucleus. Both the photon and the gluon are massless particles with spin-1 and zero 

charge; like all massless particles they zip around at the speed of light. 

The W and Z bosons carry the electroweak force that plays a major role in particle 

decay.  They have mass and are both spin-1.  The Z-boson has zero charge but the W-

boson has charge of ±1 (allowing it to be its own antiparticle).    

The Higgs boson (not on the list) carries the gravitational force and gives mass to 

all fermions and the W and Z bosons.  It is very massive (on the order of 125 GeV/c2) 

with zero charge and zero spin. Its existence is still tentative though in July, 2012 

physicists using the Large Hadron Collide reported evidence of their existence. 

Bosons have a number of important applications. They are the foundation of 

lasers because they generate coherent light beams of photons, each with the same 

quantum state.  Because each photon’s wave has the same frequency, the color of a laser 

light beam is pure, and the laser beam is very precise. 

Bosons are also the foundation of superconductivity, the property of creating an 

electric charge with no resistance.  At very low temperatures some metals, like rubidium, 

conduct electricity with no resistance and, therefore, no loss in energy.  Superfluidity is 

another application: at extremely low temperatures Helium II is exhibits no viscosity and 

flows without resistance.  
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The Pauli Exclusion Principle 

Wolfgang Pauli was the first to note that if an interchange of two “identical” 

particles changes the sign of the quantum states: these particles can not have the same 

quantum state. The consequent antisocial nature of fermions is called the Pauli Exclusion 

Principle. Matter occupies space because of the Pauli’s Exclusion Principle: particles of 

matter cannot occupy the same place so they must spread out.  The inability of fermions 

to occupy the same place is why we don’t go through the floor when we stand or walk, 

why we can’t put our fist through a brick wall, and so on.  

The Pauli Exclusion Principle is also the foundation of chemistry. It explains           

the Shell Model of the Atom in which electrons are arranged in shells (orbits) 

corresponding to their energy levels.  The inner shell can have two electrons, the second 

shell can have eight electrons, the third shell can have eighteen electrons, and so on.  

When the outer shell is filled, the atom is very stable, refusing to lose or gain electrons 

because of the high energy required to create a new outer shell.  

The Periodic Table arises from the shell model and, therefore, from the Pauli 

Exclusion Principle.  Each atomic number shows the number of protons in the nucleus, 

each with charge +1( because the atom is neutral in its normal state, this is also equal to 

the number of electrons, each with charge -1). Thus, atoms have no charge unless they 

gain or lose electrons because of an external energy kick.  Stable atoms—atoms with 

filled outer shells, like metals and inert gases—don’t chemically interact because 

chemical interaction requires incomplete outer shells so that an exchange of electrons can 

occur.   
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The Atom 
        
 
The Shell Model of the Atom 
 
 In this section we will draw out some details of the modern model of the atom.  In 

Part 1 we saw that Ernest Rutherford’s “planetary model” of the atom was rescued by 

Niels Bohr’s insight that electrons orbit the nucleus at specific “quantized” energy levels:  

the greater the radius of the orbit, the higher is the electron’s energy level, and an electron 

doesn’t change to a higher or lower orbit unless there is a discrete change in its energy.  

Bohr’s model of the atom implied a minimum energy level, preventing an electron from 

losing all of its energy and spiraling into the nucleus, thus destroying the atom. 

 Bohr’s model defined the energy levels associated with each orbit.  The quantum 

of energy is E = h/λ, where λ is the wavelength of the electron’s probability wave and h 

is Planck’s Constant.  Bohr also found that the probability wave of an orbiting electron 

must be a standing wave and it must conform to energy levels associated with vibrational 

lengths equal to one-half λ, one wavelength, 1½ wavelengths, two wavelengths, and so 

on.   

 A standing wave is a wave that is not seen to travel in any direction except 

vertically.  At any location it simply moves up and down as it passes through a cycle.  A 

standing wave arises when a traveling wave is reflected backwards onto the initial wave, 

as in a violin string (with vibrations reflected from the endpoints tied to the violin) or a 

water wave that hits a seawall and reflects in the opposite direction. 

 Several standing waves are shown below. The bottom wave (n = 1) is for the 

lowest energy level (E1), occupying the lowest orbit; the next highest energy level (E2) is 

at the second orbit, and the third energy level (E3) is at the third energy level.  Because 

the energy quantum is E = h/λ, the associated energy levels are E1 = 2(h/λ), E2 = 3(h/λ), 

and E3 = 4(h/λ).  The orbital “ring” is defined by the number (n1 for energy level E1, n2 

for energy level E2, and so on).  The number n is called the primary quantum number 

because it defines the quanta of energy associated with the orbital ring.  We will see that 

there are additional energy-related quantum numbers. 
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                                             Standing Wave Patterns 

 

 The figure above shows the standing wave patterns for electrons in the first four 

orbits around the nucleus.  The rapidly vibrating electrons in the higher orbits have higher 

energy levels, but the differences in energy between adjacent orbits are in discrete quanta.  

An electron can jump to a higher orbit (and a more rapidly vibrating standing probability 

wave) if it is given a kick from an external energy source; it can fall to a lower orbit (and 

a lower vibration frequency) if it loses a quantum of energy to an external source. 

 Each of the standing waves is the result of a direct wave and a reflected wave that, 

when combined, move vertically (along the y-axis) but not horizontally (along the x-

axis).  The lowest wave (quantum number n = 1, energy E1) is for the lowest orbit and 

lowest energy level: it has a length equal to one-half the direct wave’s length. This 

standing wave is called the fundamental wave.  The other standing waves are harmonics: 

the first harmonic (n = 2) has 1 full wavelength; the second harmonic (n = 3) has 1½ 

wavelengths; the third harmonic (n = 4) has two full wavelengths, and so on. 

 Note that each of the waves has stationary points on the x-axis that the wave 

passes through at every point in its vertical cycle; these are the wave nodes: the  

n = 1 wave has two nodes, the n = 2 wave has three nodes and so on.  The stationary 

positions on the x-axis where a wave level is zero are called antinodes. 

 Bohr’s model is the figure shown below, in which each electron orbits around the 

nucleus (N) in a separate orbital ring (n1, n2, n3,…) chasing the electrons ahead of it on 



 25 

the same path.  It has the form of Rutherford’s atom, with the addition of an energy 

quantum that keeps the orbits apart at specific distances. 

 

 

 

 
  

 

                                           

                                              

                                            Bohr’s Atomic Model 

 

 Our focus has been on a single electron. Now we look at the structure of electrons 

in an atom.  There are three important lessons.  First, Bohr’s model of a hairline path for 

each orbit is incorrect; instead, an orbit is best described as an energy shell, with the 

electrons in each shell having very similar, but not exactly the same, energy levels.  

Second, there are a maximum number of electrons allowed in each shell.  Third, the 

conduction of electricity is intimately connected to the electrons occupying the outer 

rings. 

 As to the first point, the modern view of the electron is shown below.  Each 

energy shell contains several electrons, each with a slightly different energy level and, 

therefore, a slightly different standing wave.  Three energy bands (shells) are shown: n=1 

has the lowest energy level, n=3 has the highest.  There can be higher energy shells: the 

highest known shell is n = 6, where some electrons for element 112 (copenricium) reside. 

 The highest occupied energy band (n = 3 in the diagram) is called the valence 

band.  It is the primary source of electrons in the conduction of electricity between atoms.  

Outside the valence band is the conductance band. This band is typically empty until an 

energy boost kicks an electron out of the valence band.  Electrons in the conductance 

band are “free electrons” that can be shared with other atoms. 

n3 

    n2 
 n1 

N 
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 There can be a gap between the valence band and the conduction band, as shown 

in the figure below.  No electrons are allowed in the gap, so movement of an electron 

from the valence band to the conduction band requires an energy boost large enough to 

bridge that gap.  The width of that gap is an important characteristic in the conductivity 

of electricity between atoms. 

 

  

 

 

 

 

 

 

 

 

 

                                     

 

                                                       The Shell Model 

 

 The higher shells are occupied by electrons with higher energy levels.  But the 

increment in energy level required to create a higher shell declines as the shell number 

increases.  This is because the atom is electrically neutral with the positive charge of the 

protons balanced by the negative charge of the electrons.  The attraction between the 

nucleus and a proton is exactly offset by the rotational energy of the electron, just as the 

attraction between the earth and moon is offset by the rotational energy of the moon.  But 

the attraction between the protons and electrons decreases with the shell number because 

the electrons in outer shells are farther from the protons.  Thus, it requires a larger energy 

N 

  n = 1 

  n = 2

  n = 3

Conductance 
      Band 
 

   Valence 
      Band 
 

Gap 
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boost to move an electron from n = 1 to n = 2 that the boost required to move from n = 2 

to n = 3. 

 The number of electrons in a shell is determined by the values of four quantum 

numbers n, l, m, and s.  Quantum number n is called the primary quantum number: it 

defines the energy band of an electron.  Quantum number l—the azimuthal quantum 

number—is a subband within the energy band is defined by the angular momentum of the 

electron and describes the orbital shape taken by the electron. For energy band n there 

can be as many as n of these subbands; thus the n = 3 band can have as many as three 

subbands.  Quantum number m is the magnetic quantum number.  It plays a role in the 

interaction between the electron and an external magnetic field. Finally, quantum number 

s is the electron’s spin, with two possible values: up and down. 

 Pauli’s Exclusion Principle, introduced above, says that no two electrons in an 

atom can have exactly the same quantum states, so at least one of the four quantum 

numbers must be different if more than one electron is to be allowed.  This means that 

each shell can have no more than two electrons with the same energy-related quantum 

numbers n, l, and m; those two electrons must have opposite spins (s).  As a result, in any 

filled shell half of the electrons are spin + ½ and the other half are spin -1/2.  

 

                                                      Electron Configuration4 
                                                                                        Maximum Electrons  
                                                                 Shell (n)                  Allowed 

1 2 

2 8 

3 18 

4 32 

5 50 

6 72 

7 98 

8 128 

 

                                                
4 This table shows the maximum allowed electrons.  Many elements have inner shells with less than the 
maximum allowed.  For example, copernicium, with 112 electrons, has eight shells with 2, 8, 18, 32, 32, 
18, 8, and 2 electrons rather than the 2, 8, 18, 32, 50, 2 configuration associated with maximally-filled 
shells.  
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 There is a simple algorithm for determining the maximum number of electrons in 

a shell: the nth shell can hold up to 2n2 electrons.  Of the 2n2 electrons in the n-shell, n2 

are due to the allowed energy levels n, l, and m; the addition of spin doubles the number 

of electrons allowed by the PEP.  The table below shows the number of electrons allowed 

in each shell.  Note that the number of electrons in a filled shell is always an even 

number.  Any shell with an odd number of electrons is, by definition, unfilled.                                              

 

                                                     

                                                      Electron Configuration5 
                                                                                        Maximum Electrons  
                                                                 Shell (n)                  Allowed 

1 2 

2 8 

3 18 

4 32 

5 50 

6 72 

7 98 

8 128 

  

The table above shows the number of electrons allowed in each shell.  Note that 

the number of electrons in a filled shell is always an even number.  Any shell with an odd 

number of electrons is, by definition, unfilled.  

 

Electrical Conductance 

 The atomic number of an element is the number of electrons in its atom, always 

equal to the number of protons.  Hydrogen, with atomic number 1, has one proton and 

one electron; that electron is in the  n = 1 shell that could contain two electrons; addition 

of that second electron creates a helium atom.  Copernicium, discovered in 1996 and only 

recently (2010) added to the periodic table, has 112 protons and 112 electrons with 8 

                                                
5 This table shows the maximum allowed electrons.  Many elements have inner shells with less than the 
maximum allowed.  For example, copernicium, with 112 electrons, has eight shells with 2, 8, 18, 32, 32, 
18, 8, and 2 electrons rather than the 2, 8, 18, 32, 50, 2 configuration associated with maximally-filled 
shells.  
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electrons in its outer (valence) shell.  Copper—an excellent conductor—has 29 protons, 

35 neutrons, and 29 electrons. This means that the n = 1 band is filled with two electrons, 

the n = 2 band is filled with eight electrons, the n = 3 band is filled with eighteen 

electrons, and the n = 4 has only one electron.  The n = 3 band—the outermost 

completely filled shell—is the valence band; it can not take on any additional electrons 

and it does not readily give up electrons.   

 The relationship between the valence and conduction bands determines whether a 

material is an insulator, a semiconductor, or a conductor.  An insulator has a relatively 

wide gap between the two bands, requiring an extra large energy kick for a valence band 

electron to jump to the conductance band and initiate an electron flow.  The gap between 

the valence and conductance bands for a semiconductor is smaller, making it easier for a 

valence electron to get an upward jump.  For conductors there is no gap—the valence and 

conduction bands partially overlap, and the greater the overlap the better the 

conductivity; in the extreme, with complete overlap, the conductance band is the valence 

band so all electrons in the two bands can be easily conducted to other atoms.  

 Electrical conductance is the transfer of electrons between atoms.  When an 

electron leaves one atom to join another, the electrical charge of both atoms changes.  

The “giving” atom becomes more positively charged because it has now has fewer 

electrons than protons, the receiving atom becomes more negatively charged because it 

has more electrons than protons.  This imbalance means that the electron that moves is a 

hot potato—the receiving atom gets rid of it by passing it to another atom, and so on.  At 

the same time, the giving atom, now positively charged, needs another electron and draws 

it from another atom.  In this way, electrons—and their negative charges, flow throughout 

the conducting material. 

 Electrical conductivity changes the atoms in a conducting material and, therefore, 

changes the materials through which the electrons are conducted.  Perhaps the most 

obvious every-day example is corrosion.  When two dissimilar materials are joined, the 

transfer of electrons between the metals creates a juncture which is a third element that 

not only looks different but also can be a weak joint between two otherwise strong 

materials. 
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 The shell model incorporates all of the quantum ferment with which we are 

familiar.  For example, it requires “action at a distance” because each electron must find 

somehow its own unique quantum numbers.  This means that electrons must “know” the 

quantum states of all other electrons in the atom.  If they didn’t, they would bump into 

each other like cars on the Los Angeles freeways, each attempting to take the exact 

quantum state of other electrons. Why doesn’t this happen? The prima facie answer is 

that Pauli’s Exclusion Principle doesn’t allow two fermions to share the same quantum 

state.  But this begs the question, “how does the PEP prevent this?” The answer is that 

somehow each electron “knows” the quantum states of the other electrons: without this 

information, it can not take on a quantum state different from all the other electrons.   

 Electrical conductance also is subject to quantum mechanics.  We might imagine 

that the motion of electrons from one atom to another is that a giving atom releases an 

electron from its conductance band to the conductance band of the receiving atom. The 

probability that this will be the transmission route can be calculated and this is the most 

likely transition.  But the route might be from the valence band or even lower to any band 

of the receiving atom; the deeper the giving band and the deeper the receiving band, the 

lower the probability of that transition route.  In the case of “deep shell” transmission the 

electron’s movement causes a series of additional movements within the two atoms that 

restores them to their original electron configuration until a stable result is achieved with 

the giving atom having one less conductance band electron and the receiving atom having 

one more conductance band electron. 
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Developments in Quantum Theory 
 

Several developments in quantum theory and its applications are worth 

highlighting.  The first is quantum entanglement in which composite particle systems 

(systems with two or more particles) exhibit correlations between their quantum states. 

The second is the relatively new field of quantum electrodynamics and its prediction of 

virtual particles. Finally, we discuss a connection between quantum theory and 

cosmology: the role of virtual particles in the formation of dark energy, and in the  

inflationary view of the universe’s creation and expansion. 

                              
Quantum Entanglement 
 

In Part 1we reviewed the Einstein-Podolsky-Rosen (EPR) criticism that quantum 

theory is incomplete.  In that thought experiment, an electron and positron are created 

from a photon’s decay.  The two particles are then sent in opposite directions to observer 

A and observer B, who are one light-second (300,000 km) apart.  It is known that at their 

creation the two particles have opposite spins, but the spin of each is not known. 

Quantum theory says that the spin states are probabilistic so that if, say, the z-spin of 

particle A is measured it might be | ↓ > in one experiment and, say, | → > in the next 

experiment.  You simply can’t know which spin state that will come up. 

Suppose Observer A measures the z-axis spin of his particle and finds it is | ↑ >. 

Quantum theory says that instantaneously particle B will take on spin state | ↓ >.  EPR 

argued that it was impossible for the information about A’s measured spin state to be 

instantaneously transmitted to particle B; that would violate special relativity, which 

argues that information can never travel at a speed faster than light.   

The EPR debate raised the question of entanglement.  Can two particles with a 

known relationship between their quantum states be separated by a great distance and still 

maintain that relationship?  If so, the correlation between their quantum states is 

preserved and the particles are said to be entangled. 

EPR believed that physics obeyed two crucial laws: locality, meaning that 

interactions between particles at a distance could not occur faster than light speed, and 

realism, meaning that a particle’s behavior can be predicted without disturbing it; in that 
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case the particle is deterministic and the probability rules of quantum mechanics don’t 

apply. In short, the particle conforms to a “common sense” interpretation of determinism 

without interference.  

Locality rules out “spooky action at a distance,” and realism rules out the 

probabilistic foundation of quantum mechanics. So, EPR argue, there is something 

missing in quantum theory.  There must be “hidden variables” affecting quantum states 

and if we just knew what those missing variables were, the probabilistic aspects of 

quantum theory would disappear; In such a case, A’s particle could only have z-spin state 

| ↑ >  and B’s particle could only have z-spin state | ↓ >. The EPR view is called local 

realism hidden variables theory. 

Nils Bohr responded with the concept of quantum entanglement, in which two 

particles are formed in proximity with shared state characteristics, then separate to, 

perhaps, great distances. In this case, there is a probability wave for the composite 

particle; that joint wave describes their joint states no matter how far apart are the 

particles.  If A measures his particle as having state | ↑ >, the probability wave collapses 

to that state for particle A and it also collapses to | ↓ > for particle B.  Instantaneous 

communication is not necessary with a joint probability wave.  

The concept of entangled particles was novel and controversial, but it has become 

a tenet of quantum theory.  Suppose there are two unentangled particles: each particle has  

equally probable basis states | ↑ > or | ↓ >, so | ψ >|⊗ψ > is quantum state of the 

composite particle.  Expanding this gives | ψ >|⊗ψ > = 1/4(| ↑ > + | ↓ >)(| ↑ > + | ↓ >) so 

there are four possible states for the two particles: | ↑↑>,  | ↑↓ >,  | ↓↑ >, and |↓↓ >, and 

the Composition Rule applies: 6 The four possible states each have probability ¼.   

The Composition Rule applies when the two particles are not entangled.  When 

they are entangled, as in an electron-positron pair, two of the four basis states are 

excluded; these are | ↑↑ > and | ↓↓ >.7 

                                                
6 The Composition Rule says that the joint state of two or more particles is either a simple product state or 
a superposition of simple product states.  It applies only when the particles are not entangled because both 
particles have their own quantum state. 
7 The example given has states entangled in opposing spins.  An equally valid entanglement would have 
the spins positively correlated—both up or both down. 
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 A system of entangled particles, like our positron and electron, has a total spin 

state denoted by the superposition  | ψ  > =  √½(| ↑↓ > + | ↓↑ >).  Because | ↓↑ > is the 

opposite of  | ↑↓ > we can write | ψ  > =   | ↓↑ >  - | ↑↓ >, so | ψ  > = 0—the total spin of 

the two particles is zero. Even though we know that there is zero total spin along the z-

axis, we do not know which spin state will occur until a measurement is taken.  If, at 

measurement, one spin state appears for the first particle we know that the opposite spin 

must occur for the second particle.   

 In 1965 John Bell reported an amazing result that categorically refuted the EPR 

“paradox” by showing that its “common sense” view is inconsistent with the basic laws 

of quantum mechanics: local realism did not just require that quantum theory be 

incomplete, it required that it be wrong!    

 To demonstrate this, Bell reduced the EPR “local realistic hidden variable theory” 

to three main assumptions: (1) multiple particles can be quantum entangled; (2) all action 

is local—one particle’s influence on another can not be transmitted faster than light 

speed; and (3) the laws of physics must be “realistic,” by which they meant that the 

system is deterministic, not probabilistic.  From these three assumptions, Bell argued, 

EPR conclude that there are hidden variables and that the probabilistic nature of quantum 

theory arises from our failure to understand the effects of those variables—determinism 

would be restored if we understood those effects. In short, entanglement + locality + 

realism = hidden variables. 

 Bell’s Theorem showed that there were specific quantitative conditions for 

validity of this chain of reasoning. Bell’s method was to assume that the EPR world is 

true and to calculate the relationship between spins for two particles having a zero total 

spin state (|ψ  > = 0) using the EPR local realistic hidden variables theory.  He derived 

Bell’s inequalities, showing that the EPR world implied that the probability of agreement 

of spin in the two particles was bounded from below: if EPR was correct, the probability 

of spin agreement could not exceed a specific value.   

Then he showed that if the same zero total spin system is analyzed using quantum 

mechanics, Bell’s inequalities would be violated.  So with entangled variables either 

locality is false and there is “action at a distance” or there are no hidden variables and 
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determinism is false (or both).  Thus EPR can not be correct:  There can be no local 

realistic hidden variables theory. 

Bell’s theorem has been modified over time but still has its original content.  It 

has been reduced from a “slam dunk” deductive proof that EPR is false to an 

experimental test that it is false.  All experiments thus far have found EPR false, so one 

of quantum theory’s key characteristics—non-locality (instantaneous action at a distance) 

and uncertainty—have been supported. 

 
Quantum Electrodynamics  
 

Richard Feynman (“FineMan”) was perhaps the most brilliant, quirky, and fun-

loving physicist of the last half of the 20th century.  On his way to the 1965 Nobel Prize 

he played drums for the samba in Rio’s Carnival, solved the Mayan hieroglyphic code on 

his own, and engaged in riotous activities summarized in his popular book “Surely you’re 

joking, Mr. Feynman!”   

He also was a specialist in explaining physics is everyday language.  As a 

member of the commission that investigated the explosion of the space shuttle Challenger 

in 1986.  He concluded that the problem had been that cold weather caused rigidity in an 

O-ring designed to seal joints in the fuel system.  As a result, fuel flowed past the seal 

and ignited from the engine’s heat, starting the explosion.  He demonstrated this on 

television by dropping an identical O-ring in ice water and showing how it remained rigid 

until warmed to room temperature. 

Feynman’s most important contribution was the field of Quantum 

Electrodynamics (QED), for which he shared the Nobel Prize.  QED addresses the 

interactions between quantum particles, both fermions (electrons, protons, positrons, etc.) 

and bosons (photons, gluons, etc.).  QED is also called relativistic quantum theory 

because it marries two fields long thought distinct: special relativity and quantum theory.  

QED is a remarkably accurate theory of subatomic particle interactions, and as strange as 

the theory seems, it has never been refuted in the laboratory or in its theory.   

As part of his development of QED, Feynman developed a visual approach to 

investigating interactions between electromagnetic particles. This contribution is called 

the Sum Over Histories Approach (SOH) to particle motion. The underlying mathematics 
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is called Path Integral Analysis.  The SOH approach to quantum mechanics is a simpler 

and less mathematical method of assessing the behavior of subatomic particles, though it 

faithfully replicates the complex mathematics of path integral analysis.   

According to quantum theory, a particle going from source A to target B doesn’t 

travel in simple ways (straight lines, arcs, and so on).  Instead, it takes every possible 

route, each with its own amplitude.  The analysis of the paths is a superposition of all 

possible paths, each weighted by its amplitude, and the square of a path’s amplitude is the 

probability attached to that path.  If ai is the amplitude of the ith possible path and there 

are n possible paths (each labeled Xi, i = 1, 2, …, n), then SOH says that the path from A 

to B is 

 

              (A ⇒ B) =   a1X1 + a2X2 +  a3X3 + . . . + anXn 

                                  with  |a1|2 + |a2|2 + |a3|2 + . . . .+ |an|2 = 1 

 

This looks very like the expected path in classical statistics, but one crucial 

difference is hidden in the interpretation of the amplitudes: in classical statistics the 

amplitudes are all positive real numbers and they are the probabilities; in quantum 

statistics the amplitudes  can be negative and can be complex numbers, and the squares 

of amplitudes are the probabilities  It is the complex numbers that give rise to wave-like 

behavior and to interference patterns. 

The SOH method is a straightforward of replicating the above equation: identify 

all the possible paths that a particle can take to go from A to B (i.e., X1, X2, …, Xn),  

calculate the associated amplitudes (i.e., a1, a2, …, an), then draw some squiggly lines that 

add up to the amplitude for a particle going from A to B.   

Feynman’s classic example using reflection of light from a mirror is given below.  

This example addresses three common intuitions about light: (1) it travels in straight lines 

like a choo-choo train of photons, each taking the same path; (2) when it reflects, the 

angle of incidence is equal to the angle of reflection; (3) light takes the shortest possible 

path. 

In the Feynman example, a photon is emitted at S, reflects from the surface of the 

mirror, and is detected at P.  Not all photons will be detected—many will reflect in ways 
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that pass by the detector.  The questions are “What is the probability that a photon 

emitted by S will be detected by P?” and “Which paths are most likely?”  Feynman’s 

method of answering this has three steps. First, identify each of the paths a photon can 

take from S to P.  These are (by assumption) the paths labeled A through M.8 Notice that 

some of the extreme paths (A, B, L, and M) are strange—those paths reflect backward at 

the mirror!  The lesson is that light takes every possible path; those backward-bending 

paths are unlikely, but some few photons will tale them.   

              
               SOH Analysis of Light Reflecting From A Mirror 

 

The second step is to start a clock running at the instant that a photon leaves S, 

and stop it the instant the photon is detected at P.  This is a special clock, a “phase clock,” 

also called a “Feynman clock” after its creator.  In the Technical Appendix we see that it 

is really just a visual image of a complex number. The clock has one hand that measures 

the time taken on that path, measured in wavelengths of the light; that hand moves 

counterclockwise starting from the “15 second” position, rotating 360° (2π radians) each 

time the photon travels one wavelength.  For example, suppose the photon is red light 

                                                
8 Not all photons will be detected—some will take paths that miss the detector.  The example addresses 
questions about the photons that are detected. 
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with 450 Terahertz frequency (450 trillion cycles per second) and a wavelength of 650 

nanometers.9  The clock will do a full rotation once every 450 trillionths of a second, i.e., 

every time the photon travels at light speed for 650 nanometers.  It is a very fast little 

bugger.     

The position of the clock’s hand at the instant it stops at the detector shows the 

direction, or phase, of the photon’s wave at that instant. For example, on paths A and M 

the hand is pointing to its “15 second” starting point, indicating that the photon had just 

completed a full wavelength at the instant it was detected. On path G the hand is at 45°, 

indicating that it has completed 12.5 percent (= 45°/360°) of a cycle at the instant it is 

detected. 

The U-shaped diagram traces out the real time taken for each path. Paths A and M 

take the most time because they are the longest paths.  Paths G-H take the least time 

because they are the shortest paths.  The message here is that some paths taken are 

shorter than others: not all paths are straight lines.   

Finally, vector additions are performed on the clock hands to determine the 

probability that a photon will be detected and the most probability attached to each path.  

The result is the worm-like shape at the bottom. It is constructed as follows: copy the 

clock reading for path A, then at the end of that arrow add the clock reading for path B 

(foot of the B reading tadded to the arrow end of the A reading), then add path C’s arrow 

to the end of path B’s arrow, and so on; always maintain the directions of the vectors 

when you add them.  Note that paths A-D and J-M both circle around with no particular 

direction. This means that they add little to the total probability that a photon goes from S 

to P.  But look at paths E-I. Those head in pretty much the same northeasterly direction, 

adding together to make a long line (high amplitude). Thus indicating a high probability 

that a detected proton takes one of those paths.   

The probability of a photon being detected at P is represented by the heavy line 

connecting the start of path A to the end of path M.  Of course, you would need the 

underlying mathematics to put a number on that probability, but the fact that almost all of 

                                                
9 The strange starting point and the counterclockwise rotation is because the clock is showing the angle of 
the hand relative to the horizontal, just as if a trigonometrician were measuring the angle of a line from the 
center to the edge of a circle.  After all, the clock is just a mechanism for visualizing complex underlying 
mathematics. 
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the length of that final arrow is due to E-I shows that most detected photons took one of 

those paths. 

So common intuitions are not supported by the way light behaves: (1) light does 

not travel in a straight line, though that is the most probable path; (2) on every path 

except G the angle of reflection is not equal to the angle of incidence; (3) photons tend to 

take the shortest path, but they will travel all possible paths, some of them very strange.  

This is a very creative way to tell stories without going through the very difficult 

mathematics.  It has been shown that path integral analysis (Feynman’s SOH) is fully 

consistent with the mathematics of quantum theory, so either method can be used; some 

problems are more tractable with SOH, others with standard quantum mathematics. 

 
Virtual Particles 
 

Einstein showed that there are three ways a photon and an electron can interact: (1) 

Absorption: a photon collides with an atom and an electron jumps to its higher state as it 

absorbs the photon and its energy; (2) Spontaneous Emission: an electron spontaneously 

falls to its lower energy state and a photon is emitted; and (3) Stimulated Emission:  an 

electron is at a high energy state because of a previously absorbed photon, then a stray 

electron passes the atom, attracts the absorbed photon which is emitted to be absorbed by  

the stray electron. Spontaneous emission is the basis of virtual photons. 

One of the implications of QED is the existence of virtual particles. In the 1930s 

Paul Dirac correctly predicted the existence of the positron, a new particle with the same 

mass as an electron but with a positive charge and an opposite spin.  Dirac’s theory 

implied that virtual electron-positron pairs created by photon decay can add to the 

universe’s mass (hence energy) because the lost photon is massless while both the 

electron and the positron have mass. But this creation of energy from nothing is a very 

short-lived phenomenon because the positron is the electron’s antimatter—when the two 

meet they annihilate each other, restoring the photon.  

The creation of virtual particles violates the Law of Conservation of Energy, a 

physical requirement that energy can be transformed from one form to another (heat to 

light, energy to mass) but it can never be lost or gained by the universe—all the energy 

that ever existed still exists and will exist forever more,  no more, no less.  That energy 
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began in a Big Bang as extremely high frequency radiation, then it cooled over time and 

spread out into the electromagnetic spectrum as well as combined into matter; it changed 

its form but not its amount. 

In Part 1 we noted that Heisenberg’s Uncertainty Principle applies to the 

conjugates Energy and Time; it says that ΔEΔt ≥ h:  a precise range of time for an event 

requires a large range of energy.  Nuclear reactions occur in very small time intervals, so 

the Uncertainty Principle says that they must have very large energy intervals.  

QED argues that the Law of Conservation of Energy can be violated for very 

short period periods during which, Feynman showed, ΔEΔt < h can occur, the energy 

range can temporarily be “impossibly” low. The “impossibly low” energy levels are 

transferred from the “real” to the “virtual” universe by the creation of virtual particles. 

Virtual particles are not copies of their real counterparts. During its brief period of 

existence a virtual particle is an addition to the universe’s energy—it comes out of 

nothing—and it can take on properties not normally associated with it. For example, a 

real photon has zero mass, no charge, and no spin.  But a virtual photon has mass, charge, 

and spin. 

Note that while the lifetime of a single electron-positron pair  is extremely brief, if 

photon decay is happening on a large scale, there will always be virtual mass-energy 

added to the universe.  We return to that issue later, 

Feynman introduced a visual method to catalog the interactions that can occur 

between real particles and virtual particles: the Feynman Diagram.  In a Feynman 

diagram an electron is represented by an upward-sloping arrow: the upward direction 

shows that it moves forward in time; it can take either a leftward of rightward direction.  

A downward-sloping arrow represents a positron; this does not meant that it travels 

backward in time, it is simply the symbol for a positron.  A photon is represented by a 

wavy line, with an arrow showing the direction of motion.  The point where two particles 

interact is a vertex.  In a very complicated example with lots of interactions there are 

many vertices and the Feynman diagram can be hopelessly confusing.  But we will keep 

it simple. 

A Feynman diagram for the electron-photon interactions of spontaneous emission 

is shown in the figure below. There are three particles: two “real” electrons (which have 
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mass and a negative charge) and a virtual photon, with mass and no charge. The vertical 

axis represents time (the up direction is into the future); the horizontal axis measures 

space.  The point where the head of one arrow meets the tail of another is a vertex.   

In this example there are only two vertices (points a and b).  Electron 1 (the up-

slanted arrow) is a real electron that arrives at vertex a, where it spontaneously emits a 

virtual photon and rebounds to the left as it loses energy to the photon.  The photon 

moves horizontally to point b (it is a fast little bugger, moving at light speed) where it 

meets with electron 2.  Electron 2 absorbs the virtual photon and its energy, bouncing in 

the opposite direction from its original line of travel.  

 

t 
 
                            Electron 1 (out)                                  Electron 2 (out) 
 
 
                                                                                      b (photon absorbed) 
             Photon emitted  a 
 
                               Electron 1 (in)                              Electron 2 (in) 
                                                                                              x 

             Spontaneous Photon Emission 
                      Creation of a Virtual Photon 
 

The balance of the universe  (the energy of real particles) is restored by the 

photon’s absorption by electron 2, but while the virtual photon exists the universe’s real 

energy increased because the virtual photon has mass. Energy is ultimately conserved, 

but for a moment it is created. 

An example of this process is the spontaneous emission or absorption of a photon 

when an electron moves to a lower (or higher) orbit around a nucleus. This is essential to 

Rutherford’s shell model of the atom, and to Bohr’s discovery that an electron’s orbit and 

its energy are quantized (see Part 1). 

 Another interaction is shown in the diagram below.  An electron emits photons 

that reverse the electron’s charge, converting the electron to a virtual positron; the 

negative charge is transferred to the virtual photons emitted (real photons have no charge). 

The virtual positron (positrons are shown as downward-sloping arrows) goes on to 
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interact with and absorb virtual photons, regaining its negative charge and becoming an 

electron again.  

 The creation and almost immediate annihilation of virtual particles is going on 

throughout “empty” space in vast numbers, creating what have been described as a “sea 

of virtual particles.”  So the cosmological effects can be significant. 

 
 
 
       t 
  
                        photon                                           electron 
                                                       positron 
  
 
 
                                 electron 
                                                                               photon 
 
                                                                                                   x 
                          Creation of a Virtual Positron 
 
 
Quantum Vacuum Energy and Cosmic Expansion 

 
Einstein’s General Theory of Relativity (GTR) explains gravity as the warping of 

space around areas of mass (galaxies, stars, planets).  In its original form, it predicted that 

the universe would ultimately collapse, but Eisnstein was convinced that the universe 

would maintain a constant size.  He forced this result by inserting a “cosmological 

constant” in GTR to provide a sufficient amount of negative energy to maintain a static 

universe.10  He later regretted this arbitrary introduction of negative energy by an amount 

that exactly offset the contracting effect of gravity, calling the cosmological constant “the 

worst blunder of my life.” 

But after Einstein’s 1955 death cosmologists discovered that the universe is 

actually expanding, and in 1998 they found that it is expanding at an accelerating rate; 

                                                
10 Positive energy, as in gravity, tends to compress space; negative energy tends to expand space. The 
“dark energy” that accounts for an extremely high proportion of the universe’s energy, is negative energy. 
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Einstein had been half right—a cosmological constant was needed in GTR, but it should 

have been larger.  

Many cosmologists believe that for a very short period after the Big Bang the 

universe expanded faster than the speed of light, then its rate of expansion began to 

moderate until about 5 billion years had passed.  The rate of expansion began increasing 

again because with more space there was more quantum vacuum energy to accelerate the 

expansion. If that continues, galaxies will eventually separate from each other at faster 

than light speed and we will only see our own galaxy. 

This inflationary universe might be explained by “dark energy” that fills 

otherwise empty space. The basis of this dark energy is quantum virtual particles created 

out of nothing.  Just as an electron has a minimum energy level so that lower shell 

electrons can’t fall into the nucleus, so every point in space has a minimum energy level 

called quantum vacuum energy or, more simply, Zero Potential Energy (ZPE).  This is 

measured as ZPE = hf/2 (½ of Planck’s constant times the frequency of the energy wave); 

ZPE is ½ the energy of a photon with frequency f.  

As an interesting aside, in 1948 Hendrik Casimir proposed using ZPE as a free 

source of energy: a Casimir Engine. He noted that if the gap between two electrically 

neutral metal plates is filled by a vacuum, electromagnetic radiation will spontaneously 

arise between the plates; vibrating at frequencies with integral wavelengths (just as a 

violin string must vibrate at frequencies with integer or ½-integer wavelengths).  The 

result is that the energy level between the plates is less than the energy level around the 

plates, leading to attraction between the plates.  This is called the Casimir Effect.  

The movement of the plates generates a small amount of energy that can be 

captured. But this is no perpetual motion machine: once the plates are at their minimum 

distance from each other, they have to be pushed apart to start the next cycle—and that 

requires inputting the energy that has been captured. Thus, a Casimir Engine would use 

all the energy it produces. 
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Summary 
 

In Part 1 we reviewed the history of quantum physics and examined some of its 

strange implications—that all quantum states simultaneously occur until a measurement 

is taken; that when a measurement is taken, only the measured state exists and the others 

vanish; that quantum particles seem to revise their histories when their states are 

measured; that even when totally unobtrusive, the act of measurement doesn’t just reveal 

a result, it determines the result; that entangled particles can exhibit “action at a distance,” 

in which they respond instantaneously to a change in the state of their entangled sibling 

even when separated by great distances. This is the way the subatomic world behaves. 

We don’t know why, but we do know that it is what it is.   

Part 2 has addressed the formal foundations of quantum mechanics.  A quantum 

system has a number of basis states that exist simultaneously in a superposition state for 

which the probability of each basis state can be calculated.  The superposition of basis 

states is the foundation of the probability wave that describes the evolution over time and 

space of the quantum system.  There can be situations in which particles have symmetric 

states and these particles—called bosons—tend to aggregate together.  In other situations 

particles have antisymmetric states; these particles—called fermions—repel each other.  

We discussed the Pauli Exclusion Principle that rests on the distinction between 

symmetric and antisymmetric states and is the basis for the model of the atom and the 

distinction between particles in the Standard Model.   

Some developments in quantum theory were discussed: the concept of 

entanglement; the theory of Quantum Electrodynamics, with its Sum-Over-Histories 

method of examining particle interaction; the existence of virtual particles that 

temporarily violate the Law of Conservation of Energy, and play a role in the “dark 

energy” that fills empty space and leads the universe to expand eternally.   

 Parts 1 and 2 provide a summary of quantum theory.  In part 3 we will cover 

applications of quantum theory to computing and to cryptography. 
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