
	 	
	
	
	
	
	
																																								Lottery	Principles:	
	
																																History,	Statistics,	and	Economics		
	
	

Over	the	past	fifty	years	State	lotteries	have	become	a	significant	source	of	
revenues	as	well	as	a	popular	game.	We	all	know	that	lottery	tickets	are	statistically	
“lost	money”—they	must	be	or	the	State	wouldn’t	offer	them!	What	we	don’t	all	
know	is	that	there	are	some	lottery	formats	that	have	generated	systematic	profits	
for	savvy	players,	and	that	there	are	some	ways	to	improve	the	chances	of	a	win.	

	
What	are	the	mathematical	and	statistical	mechanics	underlying	lotteries?	

Why	do	people	buy	these	almost	certain	losers?	Are	there	ways	to	improve	the	odds,	
perhaps	even	coming	out	ahead?		

	
These	are	among	the	questions	addressed	in	this	blog	and,	hopefully,	

answered	to	your	satisfaction.	We	begin	with	the	rudiments	of	lottery	analysis:	the	
mathematics	of	counting	the	chances	of	winning,	and	of	computing	the	associated	
probabilities.	Then	we	consider	the	application	of	those	principles	to	the	analysis	of	
typical	lotteries	including	Powerball	games.	Finally	we	turn	to	lotteries	that	might	
be	“winnable”	because	of	the	specific	format,	like	roll-downs.	The	blog	ends	with	a	
discussion	of	the	value	of	statistical	strategies	for	success,	and	with	some	insights	
into	the	prospect	of	having	to	share	your	Jackpot	with	another	player.		

	
	Only	the	basic	mathematics	is	used	in	the	text;	more	arcane	math	is	

relegated	to	footnotes	or	to	the	Addendum.		
	

Some	pages	are	left	blank	for	formatting	purposes.	
	

	
	
	
This	is	a	draft	of	a	work-in-progress.	I’d	appreciate	constructive	comments.	
					Please	email	them	to	webmaster	@	fortunearchive.com	(ignore	spaces)	
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1.	Lottery	Basics		
	

Like	all	games	of	chance,	lotteries	demand	a	simple	basic	skill—counting.	But	
the	counting	methods	used	are	of	a	special	type	called	Combinatorial	Mathematics.	
The	reason	for	this	special	class	of	arithmetic	is	not	that	the	counting	is	esoteric	in	
principle;	it	is	simply	that	the	numbers	involved	can	be	so	large	that	a	compact	
method	is	necessary.		

	
Combinatorial	mathematics	addresses	questions	that	can	be	phrased	in	the	

form,	How	many	ways	can	N	things	be	placed	into	groups	of	size	n?	Often	we	phrase	
the	question	more	casually	as,	How	many	ways	can	N	things	be	taken	n	at	a	time.	An	
example	is	rolling	dice.	Suppose	you	roll	a	six-sided	die	six	times.	How	many	
numbers	can	come	up	if	the	order	counts	and	there	is	no	replacement	(a	number	
can’t	be	used	twice).	The	answer	is	simple:	there	are	6	numbers	that	can	come	up	on	
the	first	roll,	five	different	numbers	on	the	second	roll,	four	on	the	third,	and	so	on.	
This	gives	6�5�4�3�2�1	=	720	ways;	we	call	these	permutations.	The	720	
permutations	will	include	repetitions	of	the	same	6	numbers;	for	example	65321,	
132465,	123456	are	three	of	the	720	permutations,	each	repeating	the	same	6	
numbers	but	in	a	different	order.	We	can	eliminate	those	repetitions	to	derive	the	
number	of	combinations,	each	combination	a	unique	collection	of	the	first	six	
integers.	We	will	find	only	one	combination	of	6	integers	in	those	720	permutations.	
	

Ok,	that	was	easy!	Now	consider	a	real	lottery.	The	player	buys	a	ticket	with	
46	numbers	from	1	to	46;	he	must	select	any	6	of	those	numbers	with	no	number	
selected	twice	(that	is,	with	no	replacement);	this	is	called	a	“46/6	lottery.”	The	
Jackpot	winners	(there	can	be	more	than	one)	must	have	selected	the	identical	six	
numbers	that	the	Lottery	randomly	selects	in	a	public	drawing;	the	order	of	the	
numbers	is	irrelevant.	This	is	a	question	of	combinations	because	the	winner	
doesn’t	have	to	select	the	six	numbers	in	any	particular	order—all	that’s	required	is	
that	the	six	numbers	match	the	winning	six	numbers.1	
	

So	how	many	distinct	six-number	groups	can	be	selected	from	46	numbers?	
You	can	list	out	all	the	possibilities,	but	with	6,744,109,680	possible	permutations	of	
46	items	taken	6	at	a	time,	ultimately	reducing	to	9,336,819	combinations	when	
repetitions	are	eliminated,	you’ll	spend	years	at	the	task.	You	clearly	need	a	quick-
and	dirty	counting	method.		
	

And	that	is	why	we	start	with	Combinatorial	Mathematics.		
	
	
	
	
																																																								
1	There	is	nothing	to	prevent	lotteries	from	being	based	on	permutations—but	there	is	also	nothing	
to	be	gained.	
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1.1	Permutations	
	

We	first	need	to	understand	a	mathematical	operation	called	a	factorial,	
denoted	by	an	integer	followed	by	an	exclamation	mark.	If	we	take	the	first	N	
integers	and	multiply	them	together	to	get	N�(N-1)�(N-2)	���3�2�1,	the	result	is	
called	N-factorial	and	denoted	as	N!.	Thus,	multiplying	the	first	5	integers	to	get	
5�4�3�2�1	is	the	calculation	of	5-factorial	(5!).	
	

The	number	of	permutations	of	N	things	taken	n	at	a	time	is	calculated	as	
	
																																																														𝑃!!=	

!!
!!! !

	
	
so,	as	we	know,	the	number	of	permutations	of	46	numbers	taken	6	at	a	time	is	
𝑃!!"=	

!"!
!"!
=	46�45�44�43�42�41	=	6,744,109,680.2	

	
If	the	lottery	required	that	you	pick	not	only	the	correct	six	numbers	but	also	

in	a	particular	order,	the	odds	would	be	determined	by	the	number	of	possible	
permutations.	But	Lottery	Commissions	don’t	care	about	the	order	in	which	you	
pick	the	correct	numbers—they	only	care	that	you	picked	the	correct	numbers	in	
any	order.	
	
1.2	Combinations	
	

In	general,	for	any	n	permutations	there	are	n!	identical	ways	of	writing	one	
combination:	for	example,	𝑃!!"	permutations	include	6!	=	720	possible	repetitions	of	
the	same	6	numbers.	To	eliminate	those	repetitions	we	divide	the	number	of	
permutations	of	46	things	into	6-thing	groups	(6,744,109,680)	by	the	number	of	
repetitions	(720)	to	derive	the	number	of	combinations	(9,366,819)	of	46	things	into	
6-thing	groups.		

	
A	more	concise	notation	defining	the	number	of	combinations	of	N	things	in	

n-thing	groups	is	
	
																																																									𝐶!!	=	

!!!

!!
	= !!

!!! !!!
	

	
so	with	6,744,109,680	permutations	of	46	numbers	into	six-number	groups,	the	
number	of	combinations	is	𝐶!!"=		

!"!
!"!! !!!

	=	9,366,819.	Of	those	9,366,819	
combinations,	only	one	is	a	match	to	the	lottery’s	6-number	selection,	so	the	chance	
that	a	ticket	wins	the	Jackpot	is	1-in-9,366,819,	and	the	probability	is	 !

!,!"",!"#
;	this	is	

a	measly	.00001068%	probability	of	a	Jackpot	win.			
																																																								
2	The	46!	can	be	written	46�45�44�43�42�41�40!	Dividing	by	40!	(the	number	of	repetitions)	leaves	
46�45�44�43�42�41.	



	 5	

	
	 That	is	the	essentials	of	combinatorial	mathematics.	It	is	the	vehicle	by	which	
statistical	analysis	is	done.		
	
1.3	Statistical	Analysis	
	
You	all	hated	statistics	in	college,	but	if	you	don’t	get	the	basics	you	are	short-
changing	yourself	at	the	lottery.	Statistical	analysis	is	the	evaluation	of	prospects	
with	risky	outcomes.3	How	should	you	evaluate	an	opportunity	that	can	have	
many—perhaps	infinitely	many—	results,	assuming	that	you	know	(or	can	
accurately	estimate)	the	“chances”	of	each	result?		
	

Consider	a	way-too-simple	example	of	a	risky	decision.	An	oil	wildcatter	is	
contemplating	drilling	a	new	well.	He	knows	neither	the	precise	results	in	sales	
revenue	and	costs,	nor	the	precise	chances	attached	to	each	possible	outcome.	But	
he	can	estimate	them	from	looking	at	records	for	drilling	wells	in	similar	
geographical,	geological,	and	topographical	situations.	This	estimation	process	is	
called	statistical	inference.	
	

Suppose	he	has	done	his	homework	and	the	results	are	distilled	into	Table	1,	
below.	There	is	a	65	percent	probability	that	the	well	will	do	“poorly”	by	losing	
$25,000,	but	there	is	also	a	35	percent	probability	it	will	earn	a	profit	of	$55,000.	
Table	1	summarizes	the	information	assuming	a	$75	price	of	a	barrel.	
	
																																																																								

Table	1	
																																																														Analysis	of	Prospects	
																																				Probability		Barrels							Sales	*										Costs										Win/Loss	

.65	 500	 $50,000	 $75,000	 -$25,000	

.35	 1,500	 $150,000	 $95,000	 +$55,000	
																																				*Assumes	a	market	price	of	$75	per	barrel.	
	

How	should	our	wildcatter	assess	the	prospects	of	the	well?	The	standard	
first	step	is	to	calculate	the	expected	value	of	its	profit.	In	general,	an	expected	value	
of	a	random	variable	(often	called	a	mean	or	an	average)	is	the	sum	of	all	possible	
outcomes,	each	multiplied	by	its	probability.	For	our	wildcatter	this	is			
	
																																																			E	=	𝑝�𝑥! + 1− 𝑝 �𝑥!	=	$3,000	
	

																																																								
3	Lotteries	are	risky	prospects.	Formally,	there	is	a	difference	between	a	risky	prospect	and	an	
uncertain	prospect.	When	both	the	odds	of	success	(or	failure)	and	the	payoff	of	each	outcome	can	be	
accurately	estimated,	the	prospect	can	be	rationally	evaluated	and	is	called	“risky.”	If	neither	the	
odds	nor	the	outcomes	can	be	calculated	with	any	precision,	rational	analysis	is	impossible	and	the	
prospect	is	called	“uncertain.”	This	fine	distinction	is	often	ignored,	as	it	should	be.	
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where	p	is	the	probability	of	a	win	(.35),	(1-p)	is	the	probability	of	a	loss	(.65),	𝑥! is	
the	value	of	the	loss	(-$25,000),	and	𝑥!	is	the	value	of	a	win	(+$55,000).	The	
expected	profit	is	$3,000.	Thus,	wells	like	this	one	are,	on	average,	profitable	so	it	
meets	the	profitability	test.		
	
The	wildcatter	turns	to	the	next,	and	more	difficult,	question:	in	light	of	the	risk	
involved,	is	the	$3,000	profit	sufficient	to	justify	drilling	the	well?	The	answer	
depends	on	two	things.	First,	what	measure	of	risk	does	he	use?	Second,	what	is	his	
psychological	propensity	to	take	risks?	First,	let’s	consider	the	risk	measure.	While	
there	are	many	measures	of	risk	in	the	financial	and	statistical	literature,	the	most	
commonly	used	is	the	standard	deviation	of	the	outcomes,	defined	as	the	square	root	
of	the	variance	of	outcomes.	This	is	a	measure	of	the	average	spread	around	the	
expected	value:	a	low	standard	deviation	(spread)	describes	low	risk;	a	high	spread	
is	high	risk.4		
	

The	variance	of	a	random	variable,	denoted	σ2,	is	the	expected	squared	
deviation	of	each	result	from	the	expected	value,	or		
	
																																			σ2	=	𝑝� 𝑥! − 𝐸 2		+	(1− 𝑝)� 𝑥! − 𝐸 2		
	

For	our	wildcatter	the	variance	is	$21,492,895,044,	an	incomprehensively	
large	number	that	occurs	because	the	variance	is	in	the	meaningless	units	of	squared	
dollars.	To	put	the	variance	on	the	same	scale	as	the	expected	value,	we	use	the	
square	root	of	the	variance,	called	the	standard	deviation.		
	
																																																	σ	=	√	σ2		=	$38,636	
	

So,	the	wildcatter	muses,	the	project	has	an	expected	$3,000	profit	but	the	
variability	of	profit	around	that	average	is	a	high	$38,636.	In	a	large	number	of	
projects	like	this	he	would	earn	between	-$35,636	and	+$41,	636	on	68%	of	the	
wells.5	
	

Is	there	enough	reward	to	compensate	for	the	risk?	That	is	a	question	of	the	
risk	premium	the	wildcatter	requires	to	invest	in	the	well.	When	added	to	the	
explicit	costs	of	the	project,	this	risk	premium	determines	the	cost	of	capital—the	
minimum	increment	over	expected	costs	required	to	accept	the	risks.		
	

																																																								
4	To	many	this	seems	strange	because	their	notion	of	risk	is,	“How	much	can	I	lose?”	or	“What	is	the	
chance	that	I’ll	lose,	and	by	how	much?”	But	the	standard	deviation	measures	variability,	not	loss,	
and	to	the	statistician	“risk”	means	“variability.”		
5	A	statistical	problem	with	two	outcomes	(win	and	loss),	and	constant	probabilities	of	win	and	loss	
in	repeated	independent	trials,	can	be	assessed	using	a	binomial	distribution.	For	a	large	number	of	
trials	a	binomially	distributed	random	variable	will	experience	68	percent	of	the	outcomes	in	the	
interval	E		±	1,	that	is,	within	a	one	standard	deviation	band	around	the	mean.	
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Suppose,	for	example,	our	wildcatter	requires	a	20	percent	return	on	his	
expected	investment.	His	expected	investment	is	the	expected	costs,	$82,000.	The	
minimum	profit	he	must	expect	to	get	with	drilling	is,	therefore,	$98,400.	The	
$3,000	expected	profit	is	woefully	short,	so	the	wildcatter	passes	up	the	
opportunity.		

		
But	how	did	our	wildcatter	come	up	with	the	20	percent	cost	of	capital	in	the	
example?	The	answer	is	subjective—the	wildcatter	must	consider	his	personal	taste	
or	distaste	for	risk.	This	will	lead	him	to	choosing	a	risk	premium—the	minimum	
excess	of	expected	return	over	expected	cost	that	he	requires	to	proceed.	We	will	
not	exploit	this	area	extensively,	but	we	now	turn	to	the	question	of	what	subjective	
elements	might	be	in	the	wildcatter’s	head.		
	
1.4	The	Risk	Premium	
	

The	notion	of	a	risk	premium	is	tied	in	with	the	question,	“Why	would	
anyone	buy	lottery	tickets?”	Clearly,	ticket	buyers	will,	on	average,	lose	most	of	their	
$2	so	the	average	outcome	can’t	he	a	profit.	If,	like	our	wildcatter,	they	had	a	
positive	risk	premium—needed	to	expect	returns	in	excess	of	costs—they	wouldn’t	
buy	tickets.	So	do	they	have	a	negative	risk	premium?	Or	is	the	notion	of	a	risk	
premium	simply	irrelevant	in	the	context	of	a	lottery?	

	
Reasons	have	been	advanced	to	explain	lottery	participation	without	

reference	to	a	risk	premium.	First,	the	lottery	might	simply	be	a	form	of	
entertainment	that	generates	sufficient	endorphins	at	each	drawing	to	compensate	
for	the	expected	loss;	in	this	case	we	might	call	frequent	players	“gambling	addicts”	
for	whom	the	expected	loss	is	simply	the	price	of	playing	at	the	casino.	Second,	
players	might	be	overconfident,	believing	that,	in	spite	of	the	published	odds,	they	
will	be	the	ones	to	get	the	winning	tickets	and	earn	a	positive	net	payoff.	We	all	
know	people	who	have	this	trait—they	think	everyone	else	will	lose,	but	they	will	
win!	Third,	the	player	might	simply	be	overly	competitive:	he	or	she	enjoys	beating	
the	other	side	and	values	a	win	far	more	than	he	dislikes	a	loss	because	he	can	bask	
in	the	win,	perhaps	crowing	about	it,	and	forget	the	loss.	
	
These	are	all	matters	for	psychologists	to	explore.	The	financial	and	economic	
literature	gives	a	fourth	reason:	the	player’s	subjective	response	to	the	lottery’s	risk.	
This	is	different	from	the	motives	above	because	it	is	a	rational	calculation	based	on	
the	player’s	enjoyment	derived	from	financial	rewards	and	risks.	Some	wonkish	
detail	is	relegated	to	parts	A2	and	A3	of	the	Addendum.	
	
Lottery	players	know	that	they	will	lose	on	average;	those	who	think	they	don’t	are	
seriously	underestimating	the	full	costs	that	they’ve	paid	for	their	play.	But	there	is	
a	rational	foundation	for	playing	a	losing	game:	the	loss	on	every	ticket	is	small—$2	
for	a	Powerball	ticket—and	while	the	chance	of	a	win	is	quite	small,	the	potential	
value	of	the	win	can	be	huge.	If	the	player	is	a	risk	lover,	defined	as	one	whose	
happiness	is	elevated	more	by	a	win	than	it	is	depressed	by	a	loss—he	will	buy	into	
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some	losing	opportunities,	as	long	as	they	don’t	lose	too	much,	because	the	rare	but	
large	win	more	than	compensates	for	the	frequent	but	small	losses.	The	risk	lover	
will	have	a	negative	risk	premium.	
	

A	more	common	attitude	toward	risk	is	risk	aversion.	A	risk	averter	is	more	
sensitive	to	the	losses	than	he	is	to	the	wins,	so	he	will	require	a	positive	risk	
premium:	he	must,	on	average,	make	a	sufficient	profit	to	reward	him	for	accepting	
risk.	A	risk	averter	will	come	out	ahead	in	the	long	run	because	he	requires	that	the	
odds	be	in	his	favor.	He	will	not	be	seen	in	a	casino	unless	he	is	the	overconfident	or	
competitive	type,	or	he	is	paying	for	entertainment.	
	

While	risk	lovers	dominate	in	casinos,	risk	averters	dominate	in	financial	
markets	like	common	stocks	and	corporate	bonds.		The	evidence	for	this	clear—on	
average,	the	return	on	financial	investments	increases	with	the	risk:	average	stock	
returns	exceed	average	corporate	bond	returns,	corporate	bond	returns	exceed	
government	bond	returns,	and	government	bond	returns	exceed	the	returns	on	
bank	deposits	and	other	cash	items.				

	
We’ll	not	consider	the	complex	matter	of	why	some	people	invest	in	stocks	

and	bonds	and	play	the	lottery:	they	act	as	both	risk	lovers	and	as	risk	averters.	This	
is	briefly	discussed	in	part	A3	of	the	Addendum.	
	

Finally,	and	solely	for	the	sake	of	completeness,	there	is	an	intermediate	state	
of	risk	assessment	called	risk	neutrality.	A	risk	neutral	person	simply	ignores	risk	
and	bases	his	decisions	on	the	expected	value—his	risk	premium	is	zero;	he	will	
take	on	risk	even	if,	on	average,	he	just	breaks	even.	If	you	know	one,	let	me	know	
the	name	and	address.	
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2.	Standard	Lotteries	
	
2.1	Public	vs.	Private	Lotteries	
	

If	you’re	of	a	certain	age	you’ll	recall	when	“numbers	rackets”	were	in	the	
news.	These	private	lotteries	were	condemned	as	both	immoral	and	illegal.		Now	
state	lotteries	abound	that	differ	from	the	numbers	rackets	in	only	two	ways—they	
are	legal	(a	matter	of	politics),	and	the	winnings	are	taxed.	The	moral	objection	to	
gambling	has	apparently	been	overridden	by	the	needs	of	the	public	purse,	as	has	
the	aversion	to	bilking	the	poor.6	Perhaps	now	the	chief	objection	to	private	
lotteries	is	that	they	compete	with	the	state	lotteries!	This	competition	could	be	
devastating—the	odds	of	winning	in	a	private	numbers	game	are	much	better	than	
in	a	similarly	structure	State	lottery,	and	the	numbers	racket	has	less	administrative	
cost.		
	

The	typical	numbers	game	is	based	on	three	random	digits,	giving	1-in-1,000	
(	.001)	probability	of	winning;	this	is	far	greater	than	the	chance	of	winning	in	any	
state	lottery,	and	the	relatively	high	probability	of	a	private	lottery	win	means	
frequent	winners,	which	means	active	participation.	The	three	winning	numbers	are	
selected	in	a	variety	of	interesting	ways:	one	is	to	use	the	last	three	numbers	in	the	
daily	betting	pool	at	a	designated	racetrack;	another	is	to	use	the	last	three	numbers	
in	the	daily	trading	volume	on	the	New	York	Stock	Exchange.	Private	lotteries	
eschew	the	expensive	and	visually	exciting	random-number	generating	machines	
used	by	state	lotteries	in	televised	drawings—they	are	low	budget	betting	pools.	

	
Anecdotal	evidence	suggests	that	a	winning	number	in	3-digit	numbers	ticket	

costing	$1	is	in	the	$500-$600	range;	this	implies	an	expected	win	of	$.50-$.60	and	
an	expected	net	loss	of		$.40-$.50	per	$1	ticket.	In	contrast,	as	we	will	see,	players	in	
State	lotteries	experience	an	average	loss	greatly	exceeding	50	percent	on	an	after-
tax	basis.	
	
	
2.2	Roll-Over	Lotteries	
	

The	typical	lottery	has	a	roll-over	format:	in	the	event	that	there	is	no	Jackpot	
winner,	the	fixed-value	payouts	for	the	lower-tier	winners	are	paid	but	the	Jackpot	
is	retained	and	rolled	over	to	the	Jackpot	at	the	next	drawing.	This	continues	until	
there	is	a	drawing	with	a	Jackpot	winner.	The	Jackpot	is	then	paid	out	and	the	next	
drawing	has	a	minimum	starting	Jackpot	that	can	then	be	built	up	with	future	roll-
overs.		
																																																								
6	State	lottery	players	are	surprisingly	well	educated	and	affluent	by	the	standards	of	the	numbers	
racket	players.	
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Consider	the	following	example	from	the	now-defunct	Massachusetts	Cash	

Winfall	lottery,	which	we’ll	discuss	in	detail	later;	the	data	are	shown	in	Table	2.	
There	are	46	numbers	from	which	a	player	selects	6	on	each	ticket.	The	Jackpot	is	
$1,600,00—a	realistic	number.	For	each	drawing	the	fixed	prizes	are	paid	out	and	if	
there	is	no	Jackpot	winner	the	Jackpot	is	rolled	over	to	the	next	drawing.	The	
expected	payoffs	for	a	$2	ticket	are	shown	in	the	table	below.	

	
Table	2	

																																																				Hypothetical	Roll-Over	Lottery																																								
																																																																																																																													Expected	
																																																																																																																										Probability									Value	
																																		Matches														Prize																	Chance7														Single	Ticket															cents	
	
	
	
	
	
	
																															
																												*	The	number	of	n-number	combinations	with	exactly	x	matching	numbers		
																															and	n-x	non-matching	numbers	is	𝐶!!𝐶!!!!!!	with	N=46,	n=6,	and	x=4.	See		
																															part	A1	of	the	Addendum	on	the	hypergeometric	distribution.	
																						

	
The	player	in	Table	2	expects	to	get	about	86	cents	from	his	$2	ticket,	for	an	

expected	net	loss	of	$1.14	on	each	ticket.		
	

Roll-overs	can	continue	indefinitely—indeed,	the	probability	is	that	they	will	
continue	for	quite	a	while—in	2003	the	Massachusetts	MegaMillions	game	went	for	
the	entire	year	with	no	Jackpot	winners.	The	Jackpot	builds	until	a	Jackpot-winning	
ticket	arrives.	Throughout	this	period	of	accumulation	the	expected	value	of	a	
Jackpot-winning	ticket	increases	as	the	Jackpot	increases	(remember,	the	chance	of	
winning	is	always	1-in-9,366,819),	and	two	things	happen:	first,	new	players	enter	
the	game,	attracted	by	the	improved	Jackpot	payout	and	bringing	in	even	more	
																																																								
7	To	repeat	the	information	in	the	Addendum,	suppose	that	we	are	to	select	n	numbers	from	a	list	of	N	numbers.	
We	note	that	that	because	the	total	number	of	possible	combinations	is	𝐶!!,	and	only	one	combination	of	n	
numbers	can	win	the	Jackpot,	the	probability	of	winning	is	1-in-𝐶!!.		But	what	if	we	want	to	compute	the	chance	
of	getting	a	lower-tier	prize.	To	be	specific,	suppose	that	N	=46,	n=	6	and	we	want	to	calculate	the	chance	of	
winning	a	four-number	prize	(x	=	4).	How	many	possible	tickets	can	win	with	four	correct	numbers	out	of	6?		
					A	common	error	is	simply	use	the	same	procedure	as	for	the	Jackpot	probability	and	compute	𝐶!!"	possible	
combinations	as	the	answer.	But	those	163,185	combinations	are	not	just	those	with	exactly	four	matching	
balls—they	also	include	five-	and	six-ball	matches,	which	also	have	four	correct	balls.	What	you	seek	is	the	
number	of	combinations	with	exactly	four	correct	numbers	and	two	incorrect	numbers.		
						This	probability	is	described	by	the	hypergeometric	distribution,	a	variant	of	the	geometric	distribution.		The	
number	of	combinations	with	exactly	four	“good”	and	two	“bad”	numbers	is	𝐶!!"𝐶!!"!!	and	the	probability	of	that	
occurring	is	(𝐶!!"𝐶!!"!!)	/𝐶!!".	
	
	

££££££	 $1,600,000	 1	in	9,366,819	 .0000001068	 16.96	
£££££	 $4,000	 1	in	39,028.41	 .00002562	 			10.25	
££££	 $150	 1in	800.58	 .001249	 18.74	
£££	 $5	 1	in	47.40	 .02111	 10.55	
££	(Free	Bet)	 $2		 1	in	6.83	 .1464	 29.28	
£	 0	 							----	 						----	 	
All	Above	 	 	 	 85.78	
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revenues	to	be	distributed;	and		players	engage	in	bulk	purchases	of	ticket	to	
increase	their	chance	of	taking	the	jackpot.	Later	we’ll	investigate	the	relationship	
between	the	Jackpot	size	and	the	number	of	tickets	in	play.	
	

One	way	to	assess	a	roll-over	is	to	determine	how	large	the	Jackpot	must	be	
before	each	ticket	becomes	a	breakeven	prospect?	Stated	differently,	what	is	the	
minimum	Jackpot	that	will	give	each	ticket	a	$2	expected	value?	In	Table	2	the	
lower-tier	winning	tickets	have	an	expected	value	of	68.82	cents,	so	the	break-even	
occurs	when	the	expected	value	of	the	Jackpot	is	$1.32.	This	happens	when	the	
Jackpot	reaches	$12,	375,472.		
	

A	second	approach	is	to	ask	how	many	drawings	you	would	expect	to	play	
before	a	Jackpot	win.	The	answer	(see	part	A1	of	the	Addendum	regarding	the	
geometric	distribution)	is	given	by	the	geometric	distribution—it	is	the	probability	
of	not	winning	for	n-1	drawings,	then	winning	in	the	nth	drawing;	this	is	(1-p)n-1p.	
The	expected	number	of	drawings	before	a	win	is	E(n)	=	!

!
	.	We’ve	seen	that	the	

probability	of	a	Jackpot	win	on	any	single	drawing	is	p	=	 !
!,!"",!"#

		so	the	expected	
number	of	drawings	before	a	first	win	is	9,366,819—you	would	expect	to	play	all	of	
the	possible	combinations	before	a	win,	and	your	ticket	cost	would	be	$18,	733,624	
(less	any	accumulated	lower-tier	prizes).	At	one	drawing	a	month	you’d	never	live	
to	see	the	win—you’d	have	to	task	your	descendants	with	the	job.		

	
To	achieve	a	Jackpot	win	during	your	lifetime	you’d	have	to	bulk-buy	tickets	

for	each	drawing.	For	example,	if	you	bought	300,000	tickets	per	drawing	the	
probability	of	a	Jackpot	win	at	any	drawing	is	.0318	and	you’d	expect	to	play	31.5	
times	before	a	Jackpot	win.8		Again,	the	expected	ticket	cost	would	be	$18,	733,624	
(less	any	accumulated	lower-tier	prizes),	but	you’ve	got	a	shot	at	winning	in	your	
lifetime;	still,	you	might	well	have	to	play	far	longer	than	the	expected	number	of	
drawings.	
	
2.3	Bulk-Buying	in	a	Roll-Over	Lottery	
	

There	is	an	old	joke.	Two	businessmen	are	at	a	bar	and	one	says	to	the	other,	
”My	company	loses	$5	on	every	widget	we	make.”	The	other	replies,	“Gee,	how	do	
you	stay	in	business?”	The	first	answers,	“We	make	it	up	on	volume!”		
	

No,	it’s	not	funny;	but	it	illustrates	a	point.	We	will	see	later	that	for	some	
lotteries	bulk	buying	is	both	common	and	can	be	profitable.	But	are	there	any	bulk-
buying	advantages	for	the	typical	rollover	lottery?		
	

The	answer	is:	maybe,	but	only	after	a	sequence	of	rollovers.	For	the	example	
in	Table	2,	the	probability	of	having	a	Jackpot-winning	ticket	if	you	buy	300,000	
tickets	is	.0318.	But	you	also	multiply	the	ticket	cost	in	the	same	proportion	and	
																																																								
8	The	geometric	distribution	applies	with	p	=	.0318.	The	expected	number	of	trials	before	a	win	is	!

!
.		
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300,000	times	an	expected	loss	is	still	an	expected	loss.	In	order	to	come	out	ahead	
you	want	to	wait	for	Jackpot	accumulation	to	make	the	payoff	sufficiently	high,	then	
buy	in.	
	
2.4	Powerball	Lotteries	
	

Powerball	lotteries,	now	run	by	47	states,	have	become	a	great	source	of	
state	revenue.	In	Powerball	the	ticket	buyer	selects	five	numbers	from	a	card	with	
69	numbers,	plus	a	sixth	Powerball	number.	The	lottery	concludes	with	a	public	
drawing	in	which	five	numbered	“white	balls”	are	chosen	from	69	numbered	white	
balls,	followed	by	selection	of	one	red	“powerball”	from	26	numbered	red	balls.	The	
result	is	six-numbers	that	define	a	Jackpot	winner.		

	
	

Table	3	
																																																			Pennsylvania	Powerball	Game	
																							Ticket																					Prize																					Chance																Probability									Expected	Payout	

																																													
																£=	White	ball	number				¢=	Powerball	number	
	

	
The	Powerball	game	also	has	a	“multiplier”	option:	for	an	extra	dollar	the	

player	can	buy	this	option	and	increase	the	payoff	by	a	multiple	of	2,	3,	4,	5,	or	10.	
The	multiplier	is	randomly	selected	at	the	public	drawing	just	before	the	full	
drawing;	it	affects	only	the	sub-Jackpot	prizes	and	the	10x	multiplier	is	not	in	effect	
if	the	Jackpot	annuity	is	more	than	$150	million.	Thus,	if	the	randomly	selected	
multiplier	is	3,	you	win	triple	the	standard	payoffs	for	all	lower-tier	prizes.		

	
The	Powerball	lottery	has	changed	several	times	since	its	introduction	in	the	

1990s.	In	2012	the	Powerball	minimum	Jackpot	increased	to	$40	million;	in	2015	
the	number	of	white	balls	increased	from	59	to	69	and	the	red	balls	were	cut	from	
35	to	26;	this	change	reduced	the	probability	of	a	Jackpot	win	from	1-in-
175,293,510	to	the	current	1-in-292,201,338.		
	
	
	

£££££+¢	 Jackpot	 1	in	292,201,338	 .000000003422	 ----	
£££££	 $1,000,000	 1	in	11,688,054	 .00000008556	 $	.0856	
££££+¢	 $50,000	 1	in	913,129	 .0000010951	 $	.0548	
££££	 $100	 1	in	36,525	 .000027385	 $	.0027	
£££+¢	 $100	 1	in	14,494	 .00006899	 $	.0069	
£££	 $7	 1	in	579.76	 .0017250	 $	.0117	
££+¢	 $7	 1	in	701.33	 .001426	 $	.0010	
£+¢	 $4	 1	in	91.98	 .010872	 $	.0435	
¢	 $4	 1	in	38.32	 .0261	 $	.1044	
	 	 	 	 $	.3106	
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In	order	to	win	the	Jackpot	the	holder	must	have	correctly	chosen	the	five	
non-Powerball	(white)	numbers,	of	which	there	are	𝐶!!"=	 !"!

!"!! !!!
	=		11,238,513	

possibilities	plus	the	correct	Powerball	(red)	option	from	𝐶!!"	=	 !"!
!"!! !!!

	=	26	
combinations.	That	is,	to	win	the	Jackpot	he	must	chose	the	correct	five	numbers	
from	11,238,513	combinations	multiplied	by	the	26	powerball	number:	a	staggering	
292,201,338	possibilities.	
	
2.5	Taxes	on	Lottery	Winnings		
	

As	noted	above,	State	lottery	winning	are	subject	to	both	Federal	and	State	
income	taxes.	The	federal	government	automatically	collects	a	25%	withholding	tax	
at	the	time	the	prize	is	awarded,	and	a	winner’s	federal	tax	liability	can	be	as	high	as	
40.8%.9		In	addition,	the	state	in	which	the	prize	ticket	was	sold	will	also	collect	an	
income	tax	unless	the	state	has	no	income	tax,	as	in	Florida.		State	income	tax	rates	
can	be	as	high	as	13.3%	for	ordinary	income	(California)	and	some	states	have	
higher	rates	for	investment	income	than	for	ordinary	income.	The	winner	of	a	large	
Jackpot	can	expect	to	pay	taxes	at	the	maximum	rates	for	investment	income,	
making	the	total	tax	rate	on	winnings	around	41%	in	no-income-tax	states	and	51%	
in	California.	
	
	
																					

	
																																																						Income	Tax	Rates	By	State,	2018	
	
	
																																																								
9	The	maximum	federal	ordinary	income	tax	rate	is	37%.	On	top	of	that	a	3.8%	rate	is	paid	on	
“investment	income.”	
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3.	“Winnable”	Lotteries:	Roll-Downs	
	

We’ve	seen	that	in	roll-over	lotteries	the	Jackpot	rolls	over	to	the	next	
drawing	if	there	is	no	Jackpot-winning	ticket.	The	only	way	to	improve	one’s	
prospects	is	to	wait	until	the	Jackpot	is	large	enough,	then	buy	tickets	in	bulk.	But	
there	are	lotteries—and	strategies—that	can	improve	the	odds.	Perhaps	the	best	
known	is	a	roll-down	format.	Regrettably	(for	the	player)	these	are	no	longer	
available.	
	
Roll-Down	Lotteries	
	

A	roll-down	lottery	treats	an	uncollected	Jackpot	not	as	a	deferred	
opportunity	to	be	transferred	to	the	next	drawing	but	as	a	current	opportunity	for	
the	winning	tickets	at	lower	tiers	in	the	current	drawing.	An	example	is	the	
Massachusetts	Cash	Winfall	lottery.	As	noted	above,	there	were	no	jackpot	winners	
in	the	Massachusetts	MegaMillions	roll-over	lottery	in	2003.	As	a	result,	interest	in	
the	lottery—and	ticket	sales—fell	sharply.	The	Massachusetts	Lottery	Commission	
looked	for	a	new	format	and	found	it.	The	Massachusetts	Cash	Winfall	game,	
modeled	on	a	Michigan	game,	had	its	first	drawing	in	September	of	2004.			
	

The	Cash	Winfall	game	required	selection	of	6	numbers	from	a	list	of	46	
possible	numbers.	The	Jackpot	had	a	starting	minimum	of	$500,000	and	rolled	over	
until	the	Jackpot	exceeded	$2,000,000.10	If	the	Jackpot	exceeded	$2,000,000	the	
drawing	converted	to	a	roll-down	format.		
	

The	roll-over	lottery	in	Table	2	is,	in	fact,	a	description	of	Mass	Cash	Winfall	
game	with	a	Jackpot	is	less	than	$2	million.	In	that	discussion	we	found	that	the	
expected	prize	from	a	single	$2	ticket	is	86	cents,	so	the	expected	net	value	of	a	
ticket	is	-$1.14.		Now	we	consider	the	prospects	of	the	same	lottery	if	there	is	no	
Jackpot	winner	and,	the	Jackpot	exceeds	$2	million,	converting	the	lottery	format	to	
a	roll-down.	
	

Savvy	players	must	predict	a	roll-down	so	that	they	can	be	prepared	for	a	
roll-down.	While	players	will	make	their	own	estimates,	the	Massachusetts	Lottery	
Commission	made	regular	public	reports	to	assist	players	in	estimating	the	Jackpot	
size	at	the	next	drawing.	Experience	suggested	that	if	a	Mass	Cash	Winfall	game’s	
Jackpot	exceeded	about	$1.6	million	the	probability	of	a	roll-down	at	the	next	
drawing	was	quite	high.	Players	understood	that	the	size	of	the	pot	at	the	next	

																																																								
10	The	$500,000	minimum	Jackpot	is	the	“starting	new”	prize	for	the	first	drawing	after	a	winner	has	
taken	the	Jackpot.	
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drawing	was	uncertain,	but	they	began	to	move	in	when	they	smelled	a	roll-down	in	
the	next	few	drawings.		
	

The	Massachusetts	Lottery	Commission	reported	that	at	a	roll-down	drawing	
it	typically	held	$1.15	to	be	paid	out	for	each	$1.00	of	tickets	sold.	If	this	was	paid	
out	it	was	a	baked-in-the-cake	15	percent	profit!	Of	course,	this	15	percent	profit	
applied	to	the	“average”	player	and	individual	players	are	subject	to	risk	and	can	
experience	total	loss.	Still	.	.	.	,	where	else	could	you	get	an	average	fifteen	percent	
for	just	a	few	days	of	“investment.”	
	

Bulk	buying	of	tickets	became	common	as	savvy	players	entered	the	game	en	
masse	in	anticipation	of	a	roll-down.	They	had	two	motives:	first,	bulk	buying	
increases	the	ticket	revenues	and	pushes	the	lottery	into	a	roll-down;	second,	bulk	
buying	allows	players	to	get	a	wide	distribution	of	ticket	numbers,	thereby	
enhancing	the	prospects	of	a	win.		
	

Consider	a	specific	Mass	Cash	Winfall	drawing	on	February	8,	2010,	shown	
below	in	Table	4.	The	Jackpot	had	reached	a	bit	more	than	$2.4	million	so	the	
drawing	converted	to	a	roll-down.	The	Commission	paid	off	the	fixed	prizes	for	the	
five-,	four-,	three-,	and	two-match	tickets	(the	last	received	209,000	free	tickets);	it	
also	distributed	the	Jackpot	among	the	lower-tier	winners	according	to	Lottery	
rules.		

	
	

Table	4	
																																																																Cash	Distributions	
																																																Massachusetts	Cash	Winfall	Game	
																																																						February	8,	2010	Roll-Down	
																																																								Holder	of	200,000	Tickets	
	
																																																																			Expected						_________Cash	Prize	Distributions___________	
											Match													Chance											Win	Tickets				Standard										Roll-Down															Total	

				
	
	
	
	

		*	The	free	ticket	for	££—is	a	noncash	prize	and	not	included	above.	There	were	29,283	free-ticket	prizes,		
											worth	a	total	of	$58,	566	in	future	drawings..	
	

Table	4	reports	the	;Massachusetts	Lottery	Commission’s	estimates	of	the	
expected	cash	winnings	for	a	player	who	bought	200,000	tickets	in	the	February	8,	
2010	roll-down.	The	expected	cash	winnings	for	this	bulk	buyer	would	be	about	
$425,000;	expected	total	winning.	Adding	the	free	tickets	at	$2	each	brings	this	to	

£££££	 1-in	39,028.41	 5	 		$20,000	 	$		90,480	 $110,480	
££££	 1-in-858.58	 250	 		$37,500	 	$164,380	 $201,880	
£££	 1-in-47.4	 4219	 		$21,095	 	$		92,185	 $113,280	
££*	 	 			29,282	 						-----	 							-----	 									-----	
			Totals	 			 		33,726	 	$78,595	 	$347,045	 $425,640	
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about	$484,000.11	After	netting	out	the	$400,000	cost	of	tickets,	the	expected	net	
cash	winning	yielded	a	profit	of	$25,640	in	cash	and	$84,206	in	cash	and	noncash	
prizes.	This	means	a	cash	profit	rate	of	6.4%	and	an	overall	(cash	+	noncash)	21.0%	
profit	rate.	
	

Of	course,	the	Lottery	books	have	to	balance—an	expected	net	win	for	
players	was	an	expected	net	loss	for	the	Lottery	Commission	and	for	the	State	(less	
the	taxes	it	collected	on	winnings).	The	Commission	was	well	aware	of	this,	but	its	
mandate	was	to	sell	tickets	and	make	money	in	the	long	run.	It	(perhaps	correctly)	
perceived	that	ticket	sales	improved	enough	at	a	roll-down	drawing	that	the	extra	
revenues	covered	the	occasional	loss.	For	whatever	reason,	it	kept	roll-down	losses	
outside	the	public’s	eye	and	treated	them	as	a	cost	of	doing	business.	

	
													In	2005	an	MIT	undergraduate	looking	for	a	senior	thesis	topic	noticed	that	
roll-downs	could	create	winning	opportunities	if	a	large	number	of	tickets	was	
bought.	The	enterprising	student	organized	Random	Strategies	LLC,	a	company	
owned	and	operated	by	his	family	and	friends;	at	its	peak	the	company	employed	
seven	people,	most	full-time.12	Over	the	LLC’s	seven-year	life	there	were	769	Cash	
Winfall	drawings,	of	which	44	were	roll-downs	worthy	of	its	attention.	The	Lottery	
Commission	estimated	that	Random	Strategies	netted	$3.5	million	over	seven	years	
by	bulk-buying	as	many	as	312,000	tickets	for	a	single	roll-down	drawing.13		
	

A	$3.5	million	profit	is	nothing	to	sneer	at,	but	it	assumes	that	ticket	
expenses	are	the	only	cost.	The	hidden	labor	and	other	capital	costs	associated	with	
bulk-buys	are	not	considered.	It	also	neglects	to	distribute	the	winnings	across	
several	full-time	employees	and	probable	part-timers;	if	the	annual	profit	per	
employee	was	known,	we	might	be	able	to	judge	whether	Random	Strategies	
generated	income	in	excess	of	the	opportunity	cost	of	full-time	“gainful”	
employment.		
	

The	non-cash	“opportunity	costs”	of	bulk	buying	are	probably	substantial	if	
one	imputes	market	prices	to	them.	Bulk	buying	is	a	time-intensive	activity	not	done	
simply	by	making	a	phone	call	or	ordering	online.	Under	Massachusetts	law	at	the	
time,	lottery	tickets	must	be	hand	completed—machine-generated	tickets	were	not	
legal	and	any	machine-generated	ticket	was	invalid.	That	restriction	was	not	rigidly	

																																																								
11	See	the	July	27,	2012	letter	to	then-State	Treasurer	Steven	Grossman	from	the	State	Inspector	
General	Gregory	Sullivan.	The	letter	exonerates	the	lottery	officials,	tells	the	history	of	the	Mass	Cash	
Winfall	program,	and	gives	useful	examples	of	how	it	benefitted	savvy	players.	It	can	be	downloaded	
from	www.mass.gov/ig/publications/reports-and-recommendations/2012/lottery-cash-winfall-letter-july-
2012.pdf.	
12	Random	Strategies	was	only	one	of	several	“syndicates”	operating	in	Massachusetts.	Students	at	
Boston	University	and	Northeastern	University	formed	another,	and	the	Selbee	group	in	Georgia	
formed	a	syndicate	to	buy	Michigan	roll-down	lottery	tickets.	There	were	undoubtedly	more	such	
groups	around	the	country.	
13	Random	Strategies	considered	300,000	tickets	the	“sweet	spot”	of	bulk	buying	to	achieve	their	two	
goals:	get	a	broad	distribution	of	numbers,	and	push	the	lottery	into	a	roll-down.			
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enforced,	but	if	hand-generated	tickets	were	standard	practice,	and	could	be	
completed	at	a	rate	of	2	per	minute,	the	purchase	of	200,000	tickets	would	take	
1,667	hours,	equivalent	to	0.83	man-years	of	labor.14	The	Lottery	Commission	
estimated	that	machine-generated	tickets	could	be	cut	at	a	rate	of	100	per	minute,	
requiring	only	33	man-hours!		
	

There	are	additional	sources	of	labor	costs	beyond	cutting	the	tickets.	In	
order	to	improve	the	odds	by	bulk	buying,	a	player	should	select	a	wide	distribution	
of	numbers	that	conforms	to	the	statistical	properties	of	the	Lottery	machine.	This	
requires	understanding	the	Lottery	machine’s	workings,	i.e.,	statistics,	and	it	also	
requires	that	the	agents	sent	off	to	buy	tickets	be	armed	with	lists	of	ticket	numbers	
to	select,	thus	avoiding	both	duplicate	tickets	and	the	agent’s	internal	biases.	
Working	from	numbers	sheets	will	slow	down	the	ticket	generation	process	and	add	
man-hours	to	the	process.	And	even	though	the	numbers	lists	can	be	easily	
produced	on	a	computer	using	a	random	number-generator,	that	itself	involves	
costs.		
	
Finally,	after	the	drawing	the	tickets	from	each	bulk	purchase	must	be	sorted	to	pick	
out	the	winners	and	losers—winning	tickets	need	to	be	claimed	and	losing	tickets	
need	to	be	held	for	tax	purposes.	This	sorting	might	be	done	several	times	to	ensure	
that	no	opportunities	are	missed,	and	losing	tickets	needed	to	be	kept	for	tax	
purposes.	One	bulk-buying	group	in	the	Michigan	Cash	Windfall	game	reported	that	
a	search	for	winners	from	a	single	roll-down	drawing	might	require	20	man-hours,	
and	would	have	to	be	done	more	than	once.		
	
So	the	man-hours	required	to	run	a	bulk	purchase	operation	can	be	considerable,	
and	those	are	not	the	only	costs.	The	money	needed	to	buy	tickets	in	bulk	involved	
either	an	opportunity	cost	or	explicit	interest	and	associated	expenses.	Storage	of	
the	massive	amount	of	information—or	scanning	it	into	a	computer—was	an	
additional	cost.	
	
Perhaps	the	real	payoff	for	Random	Strategies	LLC	was	the	kick	from	beating	the	
system!	
	
During	the	early	2000s	Cash	Winfall	games	were	introduced	in	a	number	of	states.	
Not	until	2011	did	the	Boston	Globe	bring	roll-down	losses	to	public	attention.	This	
led	to	an	investigation	into	whether	lottery	officials	had	rigged	the	game	to	make	
money	through	syndicates	of	friends.	The	investigation	revealed	no	such	thing—the	
players	had	just	seen	a	quirk	in	the	payoffs.		Even	so,	the	Mass	Cash	Winfall	game	
was	terminated	in	2012,	and	soon	all	other	Cash	Winfall	games	were	closed	down.		
	
	
	
	
																																																								
14	A	man-year	is	2,000	man-hours,	computed	at	an	average	0f	250	eight-hour	workdays.	



	 19	

	
	

	
4.	Do	Winning	Strategies	Exist?	

	
Why	do	many	people	believe	that	there	are	strategies	that	make	lotteries	

winnable?	One	reason	is	that	some	players	have	won	multiple	times	using	their	
personal	“system.”	These	people	are	poster	children	for	hopeful	players.	

	
Consider	Stefan	Mandel	who	reportedly	won	fourteen	lotteries;	his	earlier	

prizes	were	in	Australia,	which	eventually	barred	him	from	future	lotteries.	His	
most	profitable	victory	was	a	1992	Virginia	lottery	that	paid	him	at	least	
$25,000,000.	Mandel’s	strategy	is	available	to	all:	he	found	a	small	lottery	(in	terms	
of	tickets	sold)	with	a	large	Jackpot,	and	he	bought	all	7.1	million	possible	
combinations.	No	sleepless	nights	for	Mr.	Mandel.	

	
Or	think	of	Richard	Lustig,	whose	first	of	seven	wins	won	him	$10,000	in	

1992,	whose	maximum	win	was	$842,000	in	2002,	and	whose	last	win	was	$99,000	
in	2010.	He	reports	that	his	lifetime	winnings	were	over	$1	million.	Mr.	Lustig	does	
not	tell	us	what	his	costs	for	this	win	of	roughly	$1.2	million	over	28	years	cost	in	
time	and	money.	Mr.	Lustig	showed	remarkable	self-awareness	when	he	reported	
that,	

	
			I	didn’t	even	realize	that	I	had	a	method	until	my	fourth	win.15	
	
Apparently,	after	his	fourth	win	Mr.	Lustig	reverse-engineered	himself	to	

uncover	the	method	of	which	he	was	unaware.	Such	introspection	usually	takes	
years	on	an	analyst’s	couch!	
	

These	two	noted	players	have	one	thing	in	common:	their	wins	began	in	the	
1990s	before	lotteries	became	a	very	big	and	complex	business	with	standardized	
products	and	very	many	number	combinations	to	select.	Back	then	you	could	shop	
for	a	weak	lottery	format	with	less	combinations,	then	bulk-buy	in	moderate	
quantities—and	clinch	the	win,	as	did	Mr.	Mandel.		

	
With	the	very	large	numbers	of	players	today	and	the	standardization	of	

lotteries	(as	noted	above,	Powerball	is	played	in	47	states)	it	should	be	no	surprise	
that	others	have	won	multiple	lotteries.	But	sometimes	a	winner	has	some	unique	
talents.		

	
For	example,	Joan	Ginther,	a	Stanford	Ph.D.	in	statistics,	collected	almost	$21	

million	in	four	wins.	Her	primary	strategy—beyond	knowing	statistics—was	to	
stifle	multiple	winners	by	playing	in	small	lotteries	with	relatively	little	competition.	
																																																								
15	See	www.huffingtonpost.com/2013/11/08	
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She	also	adopted	the	Sam	Ervin	“I’m	just	a	country	lawyer”	approach	to	masking	her	
identity	as	a	statistician.	Presumably	to	prevent	copycats	from	following	her	around	
to	her	lottery	venues.	Only	recently	was	she	unmasked.16	

	
And	in	2016	Nicholas	Kapoor,	a	statistics	professor	at	Fairfield	University,	

won	$100,000—not	yet	a	multiple	winner,	he	appears	to	be	on	that	track.		
	
Do	statisticians	know	something	that	most	players	don’t?	The	answer	is—	

Yes!	They	know	statistics.	They	know	how	to	think	about	matters	of	pure	chance,	
they	know	how	the	Lottery	machine	“thinks.”	Games	of	pure	chance,	like	lotteries,	
are	sometimes	called	games	against	“nature.”	The	opponent	is	a	random	number-
generating	machine	without	facial	tics,	ulterior	motives,	bluffability,	or	any	of	the	
other	human	failings	that	work	in	games	like	poker.	You	can’t	read	your	opponents	
in	a	lottery,	and	machines	coded	by	statisticians	pick	modern	lottery	numbers.		

	
I’m	reminded	of	a	powerful	scene	in	the	1970	movie	Patton.	George	C.	Scott,	

the	great	actor	playing	General	George	S.	Patton,	has	just	decimated	General	Erwin	
Rommel’s	tanks	at	the	Battle	of	El	Guettar	in	North	Africa.	Patton	looks	over	the	
destruction,	smugly	smiles,	and	announces,	

	
																Rommel!	You	glorious	bastard.	I	read	your	book.	
	
Statisticians	have	read	the	book.	They	don’t	look	for	meaningless	patterns—

they	know	how	to	separate	the	wheat	from	the	chaff.	Most	of	us	can’t	do	that.	We	
mortals	need	to	believe	that	there	is	a	way	to	ferret	out	the	truth	even	when	the	
truth	is	that	there	is	no	truth;	we	seek	patterns	even	though	nature	is	random.	So	
instead	of	mimicking	the	Lottery’s	random	number-generator,	we	try	to	look	into	
the	past	or	into	ourselves	and	find	patterns	for	the	future.		
	

Let’s	look	first	at	some	things	that	don’t	work,	though	there	have	been	
winners	who	used	them.	I	call	them	Personal	Strategies	because	they	come	from	
within	the	player,	not	from	within	the	game.	
	
Personal	Strategies	
	

In	this	category	are	strategies	based	on	the	player’s	preferences,	personal	
experiences,	or	personal	relationships.	They	have	no	basis	in	statistics	or	in	how	the	
Lottery	machine	operates.	I	suspect	that	they	are	not	really	strategies	to	win,	rather	
they	are	mnemonics	that	make	it	easier	to	pick	numbers.		

	
One	such	method	is	the	use	of	birthdays	of	family	and	friends.	That	these	

occasionally	win	is	no	evidence	of	their	success—with	enough	players	using	the	
same	strategy,	we’d	expect	to	hear	of	winners	with	any	strategy.	The	problem	with	
the	birthday	method	is	that	it	reduces	your	chances	of	winning	because	it	violates	
																																																								
16	Sam	Ervin	was	the	chairman	of	the	Watergate	Commission	in	early	1972.		
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the	statistical	rules	used	by	the	Lottery	machine.	For	example,	consider	the	birthday	
method	in	a	6/46	game	of	choosing	6	numbers	from	46.		Using	the	months	and	days	
of	birth	limits	you	to	the	first	31	integers	(at	least,	until	a	32nd	day	of	a	month	comes	
around).	In	effect,	the	player	is	limiting	himself	to	a	6/31	game,	for	which	there	are	
736,281	possible	combinations.	He	has	reduced	the	available	combinations	by	92	
percent!	But	the	Lottery	machine	hasn’t—it	might	spit	out	any	of	the	other	
8,630,538	combinations.		
	
A	similar	practice	is	hot/cold	number	strategies.	Lotteries	keep	track	of	which	
numbers	come	up	and	report	the	“most	frequent”	numbers.	An	example	from	a	
popular	lottery	website	is	shown	below.	Eighteen	numbers	are	reported	as	“most	
common”	from	the	possible	69	white-ball	numbers	in	a	Powerball	game.	Each	has	
roughly	the	same	frequency—some	numbers	not	included	in	the	image	have	far	
lower	frequencies.		
	

Figure	2		
																						Example	of	Frequent	White	Ball	Numbers	in	Powerball	

																					 	
																							Source:	www.lottoball.com	
	

Some	players	might	conclude	that	the	Lottery	machine’s	frequent	picks	are	
hot	numbers	and	should	be	included	in	their	selection	at	the	next	drawing;	others	
argue	that	they	are	formerly	hot	tickets	and	will	be	cold	at	the	next	drawing.	Both	
would	be	wrong—the	69	white	ball	numbers	all	have	equal	probabilities	of	
selection.	Pure	chance	determines	the	Lottery	machine’s	pick,	and	pure	chance	can	
give	runs	of	frequently	selected	numbers	as	well	as	runs	of	not	frequently	selected	
numbers.		
	

Once	again,	those	who	use	hot/cold	number	methods	will	reduce	their	
chances	to	win	by	focusing	their	selection	on	a	subset	of	randomly	selected	number.	
They	might	win,	but	they	are	not	improving	their	chances.	
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Statistics-Based	Strategies	
	

These	are	strategies	that	rely	on	and	conform	to	the	Lottery	machine’s	
coding.	First	up	is	the	odd-even	strategy:	choose	a	balanced	mix	of	odd	and	even	
numbers.	The	second	column	of	Table	5	presents	the	actual	frequency	distribution	
of	odd	and	even	numbers	for	the	5	white	balls	that	the	Powerball	lottery	machine	
spits	out	at	drawings.		

	
Clearly,	extreme	odd-even	mixes	are	more	rare	than	are	balanced	mixes.	This	

alone	does	not	mean	that	you	should	choose	a	balanced	mix—perhaps	the	data	from	
lottoball.com	are	aberrant,	containing	unusual	runs	in	the	mix,	or	perhaps	the	
lottery	machine	isn’t	really	a	random	number-generator.	But	the	third	column	
reports	the	theoretical,	i.e.	statistical,	frequencies	of	each	mix	if	the	lottery	machine	
is	a	true	random	number-generator.		
	

Table	517	
							Even-Odd	Frequencies	
						Powerball	White	Balls	

												Odd-Even	Frequencies	in	Five	Powerball	“White”	Numbers	
	

																																																																																	Actual														Theoretical				
																																										Odd-Even	Mix													Frequency												Frequency	
	
	
	
	
	
	
	
	
																																									Source:	www.lottoball.com	and	author’s	calculation.	
	

The	theoretical	frequency	distribution	is	an	extremely	close	match	to	the	
actual	distribution.	This	suggests	that	the	Lottery	machine	is	random,	and	that	
playing	a	balanced	even-odd	mix	of	numbers	is	a	good	strategy.	After	all,	that’s	just	
the	way	the	statistics	book	reads.		

	
A	similar	strategy	stresses	high-low	number	patterns.	A	simple	application	is	

to	assign	half	of	the	69	white	ball	numbers	in	Powerball		(say,	balls	1-35)	to	the	low-
number	category	and	the	remaining	34	balls	to	the	high-number	group.		Label	the	
two	groups	“L”	and	“H”	and	assign	them	equal	probabilities.	Then	calculate	the	
probabilities	of	a	mix	from	0	L’s	and	5	H’s	to	5	L’s	and	0	H’s	to	determine	how	you	
																																																								
17	There	are	five	“white	ball”	numbers	to	be	selected.	There	are	two	possible	outcomes	for	each	
ball—odd	or	even.	The	probability	of	x	odd	numbers	and	5-x	even	numbers	is	𝐶!!(

!
!
)5,	x	=	1,	2,	.	.	.,5.	For	

the	High-Low	mix	we	have	𝐶!!"(
!
!
)69,	x	=	1,	2,	.	.	.,69.		

0	even	-	5	odd	 2.54%	 3.13%	
1	even	-	4	odd	 15.85%	 15.62%	
2	even	-	3	odd	 32.75%	 31.25%	
3	even	-	2	odd	 31.37%	 31.25%	
4	even	-	1	odd	 15.01%	 15.62%	
5	even	-	0	odd	 2.39%	 3.13%	
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should	fill	out	your	ticket.	This	is	precisely	the	same	exercise	as	the	Odd-Even	
exercise,	and	it	also	will	tell	you	to	balance	the	High	and	Low	numbers.	In	general,	
when	playing	the	lottery	you	should	adopt	balanced	strategies	because	that’s	the	
way	the	Lottery	machine	will	do	it.		
	
The	Multiple-Winner	Problem	
	

In	2005	one	Powerball	drawing	had	110	winners	of	the	five-number	prize.	
This	once-in-a-millennium	result	had	a	strange	reason:	a	fortune	cookie	company	
had	always	included	a	recommended	five-number	sequence	to	be	played	in	any	
lottery,	and	for	one	run	of	cookies	it	inadvertently	guessed	correctly.	The	result	was	
a	stampede	of	lottery	players	selecting	that	number.		

	
Perhaps	the	surest	way	to	better	payoffs	is	to	reduce	the	chances	that	other	

winners	will	share	the	Jackpot.	For	this	reason,	multiple	winners	like	Stefan	Mandel,	
Richard	Lustig,	and	Joan	Ginther	shopped	for	lotteries	with	better	odds,	fewer	
players,	and	smaller	Jackpots.	They	also	avoided	the	personal	strategies	like	
birthday-based	numbers,	knowing	that	they	both	reduce	the	probability	of	winning	
and	increase	the	chances	of	sharing	prizes.	

	
Though	marketed	by	state	entities,	today’s	lotteries	are	national	

arrangements.	For	example,	Powerball	games	in	Pennsylvania	and	Florida	are	not	
based	on	tickets	sold	in	those	states;	rather,	all	Powerball	players,	regardless	of	
state,	are	in	the	same	national	Powerball	game.	With	47	participating	states,	
Powerball	is	a	single	game	but	with	47	state	agencies	managing,	marketing,	and	
monitoring	activity	in	their	states.		

	
This	decentralization	of	information	makes	it	difficult	to	get	information	on	

multiple	winners:	Florida	has	had	12	residents	win	the	Powerball	Jackpot	since	
2009,	and	there	were	no	multiple	Florida	winners.	But	to	obtain	information	on	
multiple	winners	in	Powerball	drawings	one	would	have	to	go	through	the	reports	
for	the	other	46	lottery	agencies.		

	
So	what	can	we	say	about	the	frequency	of	multiple	winners	at	Powerball	

drawings?	In	the	absence	of	data,	we	can	estimate	the	probability	of	more	than	one	
Jackpot	winner	for	a	Powerball	drawing.	Because	the	probability	of	a	winning	ticket	
is	the	same	for	all	tickets,	one	ticket’s	chances	are	the	same	as	every	other	ticket’s	
and	the	binomial	distribution	applies.	Thus,	the	probability	of	a	Jackpot	win	by	x	
tickets	out	of	N	is,		

	
																																			P(x;	N,	p)	=			𝐶!!px(1-p)N-x	
	
Suppose	that	there	are	N	tickets	sold	for	a	Powerball	drawing.	The	

probability	of	a	single	ticket	winning	the	Jackpot	is	p	=	 !
!"!,!"#,!!"

 .		Table	6	summarizes	
probabilities	of	multiple	winners	for	1,	10,	and	100-million	tickets	sold.		
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																																																				Table	6	
																						Probability	of	x	Powerball	Jackpot	Winning	Tickets	
	
																																									#	of	Wins																	Number	of	Tickets	Sold	
																																																				x															1	million										10	million					100	million	

	
	
	
	

	
Not	surprisingly,	the	probability	of	zero	wins	is	quite	high,	but	it	falls	as	the	

number	of	tickets	increases.	The	probability	of	one	winner	rises	to	34%	at	100	
million	tickets.	The	probability	of	two	or	more	winners	also	increases	significantly	
to	almost	6	percent.	The	message:	to	minimize	sharing	your	prize	choose	lotteries	
with	small	numbers	of	tickets	sold.	This	dependence	between	the	size	of	a	lottery	in	
number	of	tickets	and	the	probability	of	sharing	the	Jackpot	is	a	reason	that	the	
multiple	lottery	winners—at	least	those	who	write	books—play	in	smaller	lotteries.	
Joan	Ginther—the	multiple-winning	statistician—is	reported	to	scout	out	lotteries	
in	small	western	towns;	Stefan	Mandel	found	smaller	lotteries	to	hit	his	Jackpots;	
Robert	Lustig	has	won	7	times,	but	none	of	them	were	huge	payoffs	and	in	25	years	
he’s	reaped	less	than	$1.5	million.	

	
	Of	course,	the	probability	of	sharing	a	prize	is	dependent	on	the	size	of	the	

Jackpot	because	larger	Jackpots	induce	more	ticket	sales.	This	is	investigated	in	
Figure	3	above,	showing	the	combination	of	size	of	the	Jackpot	(x-axis)	and	number	
of	tickets	sold	(y-axis)	for	each	of	the	454	drawings	from	January,	2014	through	May	
5,	2018.	
																																																											
																																																													Figure	3	

																										 	
																																										Source:	Author’s	calculations	using	Excel	and	EasyStat.	

0	 99.66%	 96.63%	 71.02%	
1	 .34%	 3.42%	 34.22%	
2	 .00%+	 .06%	 5.86%	
3	 .00%+	 .00%+	 .69%	
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The	scatter	points	marked	in	red	are	outliers	with	very	high	ticket	numbers	

at	very	low	Jackpot	sizes;	these	were	excluded	from	the	regression	analysis.	Clearly	
tickets	sold	and	Jackpot	size	are	positively	and	nonlinearly	related—greater	
Jackpots	elicit	increases	in	the	number	of	tickets	sold,	and	at	increasing	rates.18	It	
appears	that	the	relationship’s	nonlinearity	begins	when	the	Jackpot	size	reaches	
about	$250-$300	million,	what	might	be	called	the	lower	end	of	“super-Jackpots.”		
	

This	nonlinearity	is	important	when	estimating	the	expected	value	of	a	
Powerball	ticket.		The	binomial	calculations	in	Table	6	assume	no	relationship	
between	tickets	sold	and	Jackpot	prize,	but	Figure	3	rejects	this	assumption.	To	
capture	this	nonlinearity	we	modified	the	probability	model	underlying	Table	6	by	
having	the	number	of	tickets	sold	increase	with	Jackpot	size	according	to	the	
regression	reported	in	Figure		3.	The	result	is	summarized	in	Figure	4,	below.																																																		
	

	
																																										Figure	4	

					 	
	
The	probability	of	more	than	one	winning	ticket	(blue	line)	rises	as	the	Jackpot	
size—hence	the	number	of	tickets	sold—increases:	at	a	$1.6	billion	Jackpot	(the	
highest	experienced)	there	are	so	many	tickets	sold	that	there	is	a	greater	than	76	
percent	probability	of	more	than	one	winner,	and	less	than	a	10	percent	probability	
of	no	winners!	
	
	 	

																																																								
18	This	updates	an	analysis	titled	“According	to	Math,	Here’s	When	You	Should	Play	a	Powerball”	by	
Walter	Hickey	in	www.businessinsider.com,	September	16,	2013	
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																																												5.	Summary	

	
This	assessment	of	lottery	games	lays	out	the	essential	statistical	foundations	

for	assessing	the	games	and	playing	smarter.	Of	course,	smarter	play	might	not	be	
winning	play,	but	your	chances	will	improve	if	you	think	like	a	random-number	
generating	machine.	Methods	that	don’t	do	this	will	reduce	the	chances	of	success.	

	
We	have	identified	several	strategies	for	smarter	play:	
	
•		Focus	on	lotteries	that	are	smaller	in	both	number	of	ticket	and	jackpot		
				size.	Each	win	will	be	smaller	but	the	probability	of	sharing	is	lower.	
	
•		Think	like	a	random	number-generator—do	as	the	machine	would	do.	
	
•		Balance	the	numbers	you	choose	so	there	are	roughly	equal	odds	and		
				evens,	or	highs	and	lows.	
	
•		Wait	till	a	large	Jackpot	appears	before	buying	in,	and	then	buy	as	many		
					tickets	as	money	and	time	allow.	

	
														•		Avoid	personal	strategies—birthdays,	license	numbers,	numbers	baked	
																		into	Fortune	cookies,	ages	of	family	pets,	etc.	They	will	often	limit	your		
																		choices	of	numbers	that	the	machine	will	select.		
	
														•		Use	Quik-Pics	to	select	numbers—they	are	a	reflection	of	the	soul	of	the		
																		machine.		

	
When	you	think	a	lottery	strategy	works,	remember	the	story	of	the	two	

economists	walking	along	a	sidewalk	headed	for	lunch.	One	looks	down	and	sees	a	
$20	bill	and	says	to	his	colleague,	“Hey,	that’s	$20	bill	lying	on	the	sidewalk!”	The	
colleague	walks	on	and	the	puzzled	first	economist	rushes	up	to	him	and	says,	“Hey,	
that’s	a	free	lunch,	Why	pass	it	by?”	The	second	economist	replies,	“If	it	was	really	
there,	it	would	have	already	been	picked	up.”	
	
The	moral	of	the	story—beyond	the	silliness	of	economists—is	that	in	the	real	world	
good	opportunities	don’t	last	long.	Usually	someone	has	already	picked	up	the	$20	
bill.	Keep	the	following	in	mind:	
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																																										A	Prime	Rule	of	Lottery	Play	
				

When	there	is	an	indication	of	a	successful	lottery	strategy,	the		
opportunity	will	quickly	disappear	as	both	the	players	and	the		
lotteries	change	their	behavior:	players	will		crowd	into	the	successful	
strategy,	creating	multiple	winners	who	milk		the	innovator.	Lotteries		
will	change	their	formats	to	reduce	the	winning	odds	of	the	strategy.	
After	all,	the	Virginia	lottery	changed	format	after	Stefan	Mandel’s		
coup	,and	winnable	lottery	formats	are	simply	eliminated	(the	roll-down	
format).	By	the	time	those	on	the	outside	know	about	a	successful	strategy,	
it’s	too	late!	

	
	
Still,	there	is	one	sure	way	to	make	a	bit	of	cash	in	the	lotteries.		
	
																																																		Don’t	buy	the	books.	
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Addendum	
	

A1.	Lottery-Relevant	Probability	Distributions	
	
The	following	definitions	are	used	in	these	notes:	
	
P(x;	a,	b)	is	the	probability	of	x	given	the	parameter	values	a	and	b.	
p		:	the	constant	probability	of	an	event	occurring	at	each	drawing	(e.g,	win)			
q		:	the		constant	probability	of	an	event	not	occurring	at	each	drawing,	q	=	1-p			
µ		:	the	expected	value	of	a	random	variable,	µ	=	E(x)	
σ2:	the	variance	of	the	values	of	a	random	variable	
σ		:	the	standard	deviation	of	the	value	of	a	random	variable,	σ=	√σ2	
	
The	probability	distributions	we	discuss	all	relate	to	dichotomous	events	that	can	be	cast	as	
“good”	or	“bad,”	“right”	or	“wrong,	“success”	or	“failure;”	each	outcome	can	be	described	as	
a	“O”	or	a	“1.”		The	purpose	of	the	distributions	are	all	to	evaluate	the	number	of	“successes”	
that	occur	in	N	independent	trials.	For	example,	if	John	randomly	asks	N	women	for	dates,	
he	can	use	these	distributions	to	assess	the	probability	that	x	of	the	requests	receive	a	
positive	response,	i.e.	are	“1”s.	
	
The	Geometric	Distribution	
	
The	geometric	distribution	gives	the	probability	that	in	a	sequence	of	N	independent	trials,	
each	with	the	same	probability	of	success,	there	will	be	x	successes	and	N	–	x	failures.	You	
are	indifferent	to	the	exact	order	of	wins	and	losses.	The	probability	is		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
The	geometric	distribution	can	also	be	used	for	“waiting	time”	problems.	In	this	case	you	do	
care	about	the	order.	For	example,	the	probability	of	having	the	first	success	occur	on	the	
xth	trial	is		
	
																																																											P(x;	p)	=		(1	–	p)	x-1p				
	
																																													for	which						µ	=		!

!
		and		σ2		=		!!!

!!
																										

																																	
Geometric	Distribution	for	Lottery	Analysis			

	
																														P(x;	N,	p)	=	(1	–	p)N-x	px							x	=	1,	2,	.	.	.,	N	
		
																									for	which		µ	=		!

!
			

																																												σ2		=		!!!
!!
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If	a	fair	coin	is	flipped	repeatedly,	how	many	times	will	one	face	come	up	before	the	other	
face	shows?	With	p	=	½,		the	expected	number	of	flips	is	2.	The	variance	is	also	2.		
	
	
The	Binomial	Distribution	
	

Like	the	geometric	distribution,	from	which	it	derives,	the	binomial	distribution	
addresses	situations	in	which	a	random	event	can	have	two	outcomes:	1	or	0,	win	or	lose,	
take	a	nap	or	no	nap.	There	are	N	independent	trials,	in	each	of	which	the	probability	of	a	1	
(“win”)	is	the	same.	Noting	that	there	are	𝐶!!	orders	in	which	you	can	have	x	wins,	the	
probability	of	x	“wins”	in	N	trials	is		
	
	
																																																							
	
																																																					
	
	
	
	
	
	

Note	that	tis	is	simply	𝐶!!	times	the	geometric	distribution	probability	of	x	wins	in	N	
trials;	that	reflects	the	number	of	orders	in	which	N	trials	can	yield	x	successes	and	N-x	
failures.			

	
	
The	Hypergeometric	Distribution	
	

Suppose,	again,	that	you	have	two	possible	outcomes	that	can	be	labeled	as	1	or	0	
with	1	=	success	and	0	=	failure.	Suppose	there	is	a	box	holding	N	items	of	which	K	are	“bad”	
and	N-K	are	“good.”	Randomly	draw	a	sample	of	n	balls	from	the	box	without	replacement	.	
What	is	the	probability	that	exactly	x	of	them	are	successes	and	n	-	k	are	failures?		

	
The	hypergeometric	distribution	starts	with	a	population	of	N	items	in	which	N	-	X	

are	“good”	and	X	are	“bad.”	A	random	sample	of	size	n	is	taken	from	the	population	of	N	
items,	without	replacement.	What	is	the	probability	that	in	that	sample	x	are	“bad	and	the	
other	n	-	x	items	are	“good?”	The	answer	is	given	by	

	

																																	
Binomial	Distribution	for	Lottery	Analysis			

	
																														P(x;	N,	p)	=	𝐶!!(1	–	p)N-x	px	
	
																										for	which	µ	=	Np	and	σ2	=	Np(1-p)	

											The	Generalized	Hypergeometric	Distribution	
	
										P(x;	N,	n,	K)	=	!!

!!!!!!!!

!!!
	,			x	=	1,	2,	3,	.	.	.,	n-1,	n						

	
																									for	which	µ	=	n(!

!
)		where	(!

!
)	=	p	is	the	probability	of	bad	results	

																																																
																																			and		σ2	=	=	!!!

!!!
[np(1-p)]			
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For	example,	a	box	contains	N	=	100	marbles;	X	=	30	of	them	are	red	(“bad”)	and		
(N	–	X)	=	70	are	green	(“good”).	A	sample	of	size	n	=	12	is	taken	from	the	population	of	100.	
What	is	the	probability	that	exactly	k	=	2	are	“bad”.		
	

									The	answer	is	!!
!"!!"!"

!!"!""
		=	0.1637,	a	16.73%	probability	of	having	2	red	(“bad”)	

balls	in	the	sample	of	12	balls.	The	expected	number	of	“bads”	in	the	trial	is	3,	the	variance	
is	2.24	and	the	standard	deviation	is	1.5	bad	balls.	

	
The	description	above	of	the	hypergeometric	distribution	does	not	quite	fit	our	

lottery	selection	problem	because	we	don’t	know	the	number	of	“bad”	balls	in	the	
population.	Fortunately—as	so	often	happens	in	the	wonderful	world	of	mathematics—
there	is	a	symmetry	in	the	numbers	that	allows	a	transformation	of	the	problem	that	
eliminates	explicit	reference	to	X.19	The	transformed	statement	of	the	probability	of	x	“bad”	
balls	in	a	sample	of	n	is	
																																																
																																							
	
	
	
	
	
	
	
	
	
	
	
	

	Consider	a	6/46	lottery.	We	want	to	calculate	the	probability	that	our	6	selected	
numbers	out	of	46	have	exactly	4	numbers	that	are	“good,”	that	is,	among	the	6	numbers	
selected	by	the	lottery	machine.	By	“exact”	we	mean	that	four	numbers	of	our	6	match	and	
two	numbers	don’t	match.		

	
Using	the	description	of	hypergeometric	probability	just	given,	we	calculate	the	

probability	that	exactly	4	items	in	a	6-item	selection	will	match	the	lottery	–selected	six	
numbers	
	
																					                 𝑃 4; 46, 6 =  !!

!!!!!!"!!

!!!"
			=		!!

!!!!"

!!!"
		=		.0000125	or	.125%						

	
The	Poisson	Distribution	
	
The	Poisson	distribution	is	another	probability	distribution	in	the	dichotomous	(zero/one)	
class.	One	of	its	many	uses	has	been	in	investigating	reports	of	“hot	zones”	for	cancers,	as	

																																																								
19	The	road	to	this	transformation	begins	with	the	easily	proved	observation	that	𝐶!! =	𝐶!!!! .	Note	

also	that	!!
!!!!!!!!

!!!
	=	!!

!!!!!
!!! 

!!
! .		

																																	
Hypergeometric		Distribution	for	Lottery	Analysis			

	
											P(x;	N,	n)	=	!!

!!!!!!!!

!!!
							x	=	1,	2,	3,	.	.	.,	n-1,	n	

	
													where	µ	=						and	σ2	=	
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when	a	community	experiences	a	high	rate	of	occurrence	of	an	event.	The	question	is,	“Is	
this	rate	of	occurrence	unusually	high?”	
	
The	Poisson	distribution	has	one	parameter	u,	the	average	rate	of	occurrence	of	an	event.	It	
is	used	to	predict	the	number	of	random	events	
	
	
	
	
	
	
	
	
	
	
	
Note	that	the	mean	and	variance	are	both u,	and	the	standard	deviation	is	√µ.		
	
An	example:	the	Marine	Patrol	in	an	area	investigates	10	boating	accidents	in	a	normal	
month.	Last	month	there	were	15	accidents	and	the	question	is,	“Has	something	happened	
to	increase	the	chances	of	accidents,	or	is	thus	just	a	blip	due	to	chance?	With	u	=	10	the	
probability	of	exactly	15	accidents	is	3.47%	and	the	probability	of	15	or	more	accidents	is	
8.36%.	That	is	not	outside	of	the	experience	from	pure	chance.20	
	
A	lottery-related	use	of	the	Poisson	is	in	predicting	the	number	of	multiple	winners	in	a	
similar	lottery.	From	past	data	in	similar	lotteries	the	average	number	of	multiple	winners	
at	drawings	can	be	computed;	this	becomes	the	u	for	the	Poisson.		
	
If,	say,	one	drawing	in	every	10	has	2	or	more	winners,	the	per-drawing	average	is	0.1.	The	
Poisson	distribution	tells	us	that	if	u	=	.1	the	probability	of	two	winners	is	tells	us	that	the	
probability	of	2	winners	is	4.52%,	and	the	probability	of	3	winners	is	0.02%.	Four	or	more	
winners	are	extremely	rare.	
	
	
	
	
	
	
	 	

																																																								
20	The	common	standard	of	“unusual”	in	statistics	is	when	the	probability	of	a	bad	event	or	worse	is	
less	that	5%.	In	this	case	the	probability	of	15	or	more	accidents	if	10	is	the	normal	accident	rate	is	
over	8%.	This	is	within	the	industry-standard	“bounds	of	chance.”	

																																The	Poisson	Distribution			
	
																															P(x;	u	)	=	!

!!!!

!!
			x	=	1,	2,	3,	.	.	.	

	
															where	µ	=		u				and	σ2	=	u	
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A2.	The	Economics	of	Risk-Bearing	

	
A	tenet	of	the	economic	of	risk-taking	is	that	people	don’t	make	choices	to	

maximize	the	expected	vale	of	their	wealth.	Rather,	they	attempt	to	maximize	the	
expected	satisfaction	they	derive	from	wealth.	Satisfaction,	called	utility	because	of	
the	utilitarian	philosophy	that	once	dominated	the	field,	is	a	function	of	wealth	that	
has	the	property	that	it	increases	with	the	level	of	one’s	wealth.	It	is	represented	by	
the	function	U(W),	which	just	says	that	“utility”	(U),	depends	on	wealth	(W).	There	is	
only	one	restriction	on	the	shape	of	this	relationship:	the	marginal	utility	of	wealth	is	
positive,	that	is	U’(W)	>0.	In	summary,		
	
																																								(A2.1)										U	=	U(W)	where	U’	>	0	
	

This	is,	of	course,	a	hypothetical	construct:	nobody	knows	the	degree	of	their	
satisfaction—	the	hypothetical	unit	is	called	a	“util,”	but	there	really	is	no	unit	of	
measurement.	You	can’t	one	person’s	satisfaction	with	another’s.		
	

Still,	(A2.1)	is	summarizes	what	is	commonly	believed:	that	people	like	
wealth	and	can	never	have	too	much.		
	
Risk	Aversion	
	

Suppose	also	that	we	adopt	another	piece	of	information:	utility	is,	as	before,	
an	increasing	function	of	wealth	(U’>0),	but	the	wealthier	you	are,	the	less	
additional	satisfaction	you	get	from	a	further	increase	in	wealth,	i.e.,	the	rate	of	
increase	in	satisfaction	(marginal	utility)	declines	as	wealth	increases.	Thus	is	a	
statement	about	U’’(W)—the	second	derivative.	It	says	that	while	the	first	derivative	
U’	is	always	positive,	the	second	derivative	is	always	negative.	Together	these	pieces	
of	information	say	that	I	can	never	be	too	rich	(I	always	like	more)	but	my	increased	
satisfaction	as	wealth	rises	wealth	diminishes	as	I	get	more	affluent.	This	reflects	is	a	
common	household	belief—as	people	accumulate	wealth,	the	kick	they	get	from	an	
additional	dollar	diminishes.	
	

Diminishing	marginal	utility	gives	a	shape	to	the	relationship	between	utility	
and	wealth.	I	will	assess	whether	the	increase	in	utility	from	a	win	exceeds	the	
decrease	in	utility	from	a	loss.	With	diminishing	marginal	utility	I	am	“loss	averse,”	
making	me	a	“risk	averter.”	
	

The	graph	below	exhibits	a	risk	averter’s	utility-wealth	relationship.		
Suppose	he	or	she	has	W0	of	wealth	in	a	riskless	asset	called	“cash;”	this	gives	him	
utility	of	U(W0).	Now	comes	a	land	developer	offering	an	investment	opportunity	
that	will	either	increase	his	wealth	by	+Δ,	to	W2	and	his	utility	to	U(W2)	or	will	
reduce	his	wealth	by	the	same	amount,	-Δ,	to	W1,	giving	him	utility	of	U(W1).	
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				U(W	)																																			Graph	1:	A	Risk	Averter																																
	
	
																																																																																														Actual	Utility	
																																																																																																																	Expected	Utility	
	

																																																																																	c	
																																													
																																												b	

																																	
	

	
																			a	
	

	
	
																																							-	Δ 																										+	Δ 	
																																																																																																																																				W	
																									W1																								W0																									W2	
	
	

The	concave	blue	curve	shows	actual	utility	and	the	straight	rust	line	shows	
expected	utility,	the	utility	expects	to	enjoy	if	he	buys	into	the	risky	proposal.	
Expected	utility	and	expected	wealth	are	defined	as:	

	
																												E(U)	=	pU(W2)	+	(1-p)U(W1)	
	
																											E(W)	=	pW2	+	(1-p)W1	
	
	

with	p	being	the	probability	of	a	win	and	(1-p)	the	probability	of	a	loss.	If		
p	=	0	the	player	will	lose	for	sure,	putting	him	at	wealth	W1	and	utility	U(W1);	this	is	
at	the	southwest	end	of	the	expected	utility	line	(point	a).	If,	on	the	other	hand,	p	=	1	
so	he	is	certain	of	winning,	he	will	be	at	point	c,	with	W2	wealth	and	utility	U(W2).		
If	p	=	½	so	the	odds	are	even,	the	expected	wealth	will	be	W0—the	project	is	a	break	
even	opportunity—and	he	will	be	at	point	b	for	actual	utility	with	cash,	or	b’	for	
expected	utility	with	risk.	Note	that	at	b	his	expected	wealth	is	W0,	the	initial	certain	
wealth,	so	he	experiences	no	expected	wealth	change,	his	expected	utility	is	(b-b’)	
less	than	the	utility	he’d	get	with	the	certain	cash	position.		
	

The	important	point	is	that	anywhere	between	a	and	c	the	risk	averter	will	
experience	an	expected	utility	less	than	the	actual	utility	he	would	have	at	that	level	
of	wealth	if	he’d	avoided	the	risky	opportunity.	For	example,	if	p	=	½	the	
development	opportunity	is	a	wash	because	the	expected	wealth	is	W0,	the	wealth	

U(W1)	

U(W2)	

U(W0)	

		

b’’	
b’	
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he	had	in	cash:	he	will	have	exchanged	a	certain	wealth	of	W0	for	a	risky	opportunity	
that	doesn’t	improve	his	expected	wealth.		
	

There	are	two	equivalent	ways	to	describe	our	risk	averter.	First,	he	will	
need	a	minimum	increase	in	expected	wealth	in	order	to	exchange	a	riskless	cash	
position	for	a	risky	asset.	That	minimum	increase—the	risk	premium—is	b	–	b’	in	
the	above	graph;	it	will	be	greater	the	faster	marginal	utility	of	wealth	diminishes	as	
wealth	increases,	i.e.	the	more	risk	averse	he	is.			
	

Second,	and	equivalent,	the	risk	averter	requires	the	odds	to	be	in	his	favor	
by	at	least	enough	to	provide	the	risk	premium.	He	will	accept	no	outcome	to	the	
southwest	of	b”	on	the	rust-colored	line.	
	

This	analysis	leads	to	several	propositions:	
	
								•	A	risk	averter	will	never	take	a	fair	bet—a	bet	with	an	expected	value	equal		
											to	it’s	cost—because	fair	bets	expose	him	to	risk	without	a	reward	in	the	form	
											of	an	expected	increase	in	wealth.		
	
							•	A	risk	averter	must	expect	some	improvement	in	his	situation	to	entice	his		
										to	buy	a	risky	asset.	That	improvement	can	be	in	he	form	of	an	expected	
										increase	in	wealth	that	exceeds	his	risk	premium,	or	in	a	probability	of	a		
									win	exceeding	that	which	makes	the	risky	asset	a	fair	bet.	This	increase	in	
									probability	is	exactly	that	required	to	meet	the	player’s	risk	premium.		
	
						•	A	risk	averter	will	not	play	a	lottery	for	financial	gains	because	lotteries		
									offer	too	low	a	probability	of	winning;	in	fact,	lottery	tickets	are	over-	
									whelming	losers	on	average.	He	might,	however,	play	a	lottery	or	non-	
									financial	reasons	like	entertainment	(enjoying	the	game)	or	over-	
									confidence	(overestimating	his	odds).		
	
						•	A	risk	averter	will	confine	his	“gambling”	to	traded	securities	like	stocks		
									and	bonds	because	they	earn	a	risk	premium—the	average	return	exceeds		
									the	returns	on	safe	assets	like	cash	or	government	bonds.	The	reason	for	
									that	is	that	the	other	players	are	also	risk	averse,	so	a	risk	premium	must		
									be	earned	for	all.	Economists	would	say	that	the	marginal	player	must	be	risk	
									averse.	
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Risk	Loving	
	
	 Having	slogged	through	risk	aversion,	risk	loving	should	be	easy	going.	The	
only	behavioral	difference	is	that	he	has	increasing	marginal	utility,	predisposing	
him	to	taking	risks	because	the	satisfaction	of	a	win	exceeds	the	disappointment	of	a	
loss.		
	
																																												Graph	2:	A	Risk	Lover																																				
																				
																																																																																																																			Actual	Utility	
																																																																																																																	Expected	Utility	
																	U(W)	
		
	
	
	
	
	
	
								U(W2)	
	
	
	
	
																																																															b’	
								U(W0)																																																										b	
	
	
								U(W1)																																																																																																															W	
	
																																																		W1																W0														W2	
	

Increasing	marginal	utility	means	that	the	risk	lover	will	take	an	unfair	bet—
one	that	has	an	expected	loss.	He	has	a	negative	risk	premium—he	is	willing	to	
exchange	a	safe	position	for	a	risky	position	even	with	an	expected	loss,	so	long	as	
the	expected	loss	is	not	too	much.		
	

The	chart	above	shows	a	risk	lover’s	utility	function	with	his	actual	position	
at	point	b	with	wealth	W0	and	utility	U(W0).	Notice	that	at	b’	his	expected	utility	
matches	his	actual	at	b—he	would	take	the	risky	prospect	so	long	as	he	expects	to	
lose	no	more	than	is	b’	–	b;	his	risk	premium	is	b’	–	b,	which	is	negative.	Stated	
equivalently,	he	will	take	a	bet	even	if	the	probability	of	winning	is	lower	than	that	
giving	a	fair	bet.	You	can	see	him	at	the	casino	and	in	the	stock	market	(where	he	
would	be	called	the	“inframarginal	investor,”	that	is,	an	investor	who	is	among	the	
most	eager	to	enter	a	market	dominated	by	risk	averting	“marginal	investors.”)	
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A3.	Prospect	Theory	
	

There	are	library	bookshelves	groaning	with	the	weight	of	books	on	how	
investors	assess	and	respond	to	risk.	But	arguably	the	best	work—certainly	the	
most	influential—is	from	two	psychologists	who	earned	the	Nobel	Prize	in	
Economics.21	Amos	Tversky	and	Daniel	Kahneman	spent	their	careers	as	a	team	
investigating	how	people	respond	to	gains	and	losses	in	a	variety	of	decisions,	both	
financial	and	non-financial.	Their	work	has	become	the	foundation	of	a	blend	of	
psychology	and	economics	called	Behavioral	Economics.		Among	the	concepts	they	
developed	is	Prospect	Theory,	an	approach	to	how	humans	really	assess	risks.	A	well	
known	component	of	Prospect	theory	is	familiar	to	us	all—Loss	Aversion:	people	are	
far	more	sensitive	to	losses,	even	small	losses,	than	they	are	to	gains:	we	are	risk	
averse,	at	least	in	matters	of	large	losses	and	gains,	though	there	may	be	some	small	
ranges	that	elicit	risk	loving.		
	

The	mainstream	economic	approach	to	risk-taking	is	rationalist,	stressing	the	
logical	consistency	of	choices.	But	psychological	experiments	have	shown	that	
people	are	not	logically	consistent	and	rational.	A	simple	example	suffices:	inform	a	
group	of	people	that	a	new	medical	treatment	will	improve	the	health	of	98	percent	
of	the	sufferers;	inform	another	group	that	2	percent	of	takers	will	not	be	helped.	
You	will	find	that	the	first	group	is	more	favorably	inclined	toward	the	treatment	
than	the	second.	Yet	both	statements	are	identical!	

	
Another	example	is	that	some	companies	tell	a	new	employee	that	they	are	

automatically	enrolled	in	a	pension	plan	unless	they	opt	out.	Other	companies	tell	
new	employees	that	they	are	not	enrolled	in	a	pension	plan	unless	they	opt	in.	It	
turns	out	that	considerably	more	permanent	pension	plan	enrollments	with	the	
automatic	opt-out	plan	than	with	the	automatic	opt-in	approach.		even	though	those	
are	identical	options—in	each	case	you	can	choose	to	enroll	or	not;	all	that’s	
different	is	the	way	you	express	an	option.		

	
Psychologists	Amos	Tversky	and	Daniel	Kahneman	spent	their	careers	as	a	

team	uncovering	and	investigating	similar	inconsistencies.	The	first	example	just	
given	they	called	Framing	Bias:	the	answer	to	a	question	depends	on	how	the	
question	is	framed—people	will	tend	to	ally	with	the	most	positive	frame.	The	
second	example	is	the	Default	Bias:	people	stay	with	the	approach	that	is	
automatic—they	tend	to	not	express	their	preferences.	

	
As	part	of	their	research	they	also	created	experiments	involving	choices	

about	risky	opportunities.	They	summarized	their	results	in	what	they	called	
Prospect	Theory.	According	to	Prospect	Theory,	the	representative	individual	had	a	
utility-of-wealth	function	like	that	below.		
	
																																																								
21	Tversky	died	before	the	Nobel	Prize	decision.	Under	Nobel	Economics	Prize	rules	he	was	not	
eligible	for	the	prize.	But	that	award	clearly	is	not	Kahneman’s	alone.	



	 37	

																																											 	
																																																						Typical	“Value	Function”	
	
	
This	image	shows	several	notable	features:	
	

•	Risky	prospects	are	evaluated	not	by	levels	of	wealth	but	by	changes		
			in	wealth.	People	choose	zero	(no	change)	as	their	reference	point	and		
			think	in	terms	of	gains	and	losses.	This	is	consistent	with	the	common		
			association	of	“risk”	with	loss	rather	than	with	variability.		
	
•	People	are	Loss	Averse.	A	small	loss	from	the	reference	point	is	resisted	
			more	than	a	small	win	is	sought.		
	
•	In	the	region	of	losses,	people	act	as	risk	lovers.	Once	they	know	they	have		
			a	loss	position,	they	take	bets	that	will	increase	their	expected	loss.	Thus,		
			if	they	enter	the	loss	region	at	a	casino	game,	they	will	continue	to	play	in		
			the	hope	of	a	win	to	recoup	the	loss.	They	are	like	the	classic	embezzler		
			who	doubles	up	on	bets	to	regain	his	losses	and	repay	the	embezzled	funds		
			before	the	embezzlement	is	discovered.	
	
•	In	the	region	of	gains	people	act	as	risk	averters,	requiring	a	positive	risk		
			premium	to	take	on	a	prospect	with	a	variable	return.	Thus,	they	will	invest		
			in	financial	securities	because	of	their	expected	gain	(risk	premium).	
	
	


